MENA 1000 – Materialer, energi og nanoteknologi

Slides:



Advertisements
Liknende presentasjoner
Nyttig energi og fantastisk elektronikk
Advertisements

Den strålende sola Del 2: Nordlys Foto: Jouni Jussila.
Astrofysikk Fysikk 1.
Nordlys Drivhus- effekten Ozonlaget Solvind→
Induksjon.
Stråling fra stjernene Fysikk 1
Knight, Kap.38 Emisjon av lys (lysutsending).
Astrofysikk & Strålingslovene
Wiens forskyvningslov og Stefan-Boltzmanns lov
Kap 02, 03 Posisjon – Hastighet – Akselerasjon
Parkabel I dag bruker vi mest UTP-kabel som ersom er uskjermet. Vi bruker mest enkjærnete ledere. Flertrådete ledere brukes derimot i koblingssnorer.
ELEKTRISK ENERGI FRA FORNYBARE OG IKKE-FORNYBARE ENERGIKILDER UNGDOMstrinnet vurderingskriterier til underveisvurdering Navn:____________________________________________________________________.
Astrofysikk & Strålingslovene
Kapittel 2: Sammensatte system
ELEKTRISITET KAPITTEL 11.
Elektrisk ladning / felt
Kap 18 Stoffers termiske egenskaper
Stjernenes fødsel, liv og død Fysikk 1
Oppsummering til eksamen Kap.1, 3, 4 og 5
Medisinske Lasere. Praktisk-teknisk gjennomgang,definisjoner
Gauss lov.
Elektromagnetisk stråling
Arbeid - Kinetisk energi
Atomenes elektronstruktur
Forelesning nr.2 INF 1411 Elektroniske systemer
Likestrøm Ems – elektromotorisk spenning (s.15) Kjemisk (batteri)
Fysikk og teknologi - Elektrisitet
Elektrisk potensial.
Magnetfelt.
Strøm / Resistans / EMS.
Potensiell energi og Energibevaring
Gravitasjon.
STRÅLING Er energi som sendes ut fra en strålingskilde i form av bølger eller partikler. Kan være synlig (lys) og usynlig (radiofrekvens) energi.
Radioaktiv stråling Mål for opplæringen er at du skal kunne
Magnetisme og elektrisitet – nære slektninger
Formelmagi 33-1 Begrep/fysisk størrelse
Formelmagi 34-1 (34.2) Spenning indusert ved bevegelse (motional emf)
Formelmagi 31-1 Begrep/fysisk størrelse
Formelmagi 35-1 (35.3) Forskyvingsstrøm (displacement current)
Elektromagnetisme: Første del av
Spektakulære begivenheter knyttet til magnetfelt i det nære verdensrommet Fysikermøtet 2003 Kjartan Olafsson og Rune Stadsnes, Fysisk institutt, Universitetet.
Kraft og bevegelse Kap 9.
MENA 1000 – Materialer, energi og nanoteknologi
MENA 1000 – Materialer, energi og nanoteknologi
Kap. 3 Energi og krefter - se hva som skjer!.
MENA 1000 – Materialer, energi og nanoteknologi
MEF 1000; Materialer og energi - Kap. 2 Krefter, felt, stråling
MEF 1000; Materialer og energi - Kap. 2 Krefter, felt, stråling
Forrige gang lærte dere:
Læreplanmål i LK 06 Stråling og radioaktivitet (VG 1)
Det store spørsmålet: HVA ER ALT BYGD OPP AV?.
Elektronisk løgndetektor
AST1010 – En kosmisk reise Forelesning 4: Fysikken i astrofysikk, del 1.
ELEKTRISITETELEKTRISITET KAPITTEL 11. ELEKTRISITET.
Bygg en kulerullebane - - om Stillingsenergi og Kinetisk energi En praktisk mekanisk øvelse som introduksjon til elektrisitetslæra av Nils Kristian Rossing.
«Hvorfor går strømmen motsatt vei av elektronene?»
Egenskaper til krefter
Stråling mot jorda. Stråling Bevegelse av energi i form av bølger Sola er hovedkilden til den strålingen jorda mottar Lysstråling har særegne elektriske.
KRAFT OG BEVEGELSE Fysikk.
Elektrisitet.
Forelesning 3: Mekanikk og termodynamikk
Elektrisitet og magnetisme
Elektrisitet og magnetisme
Atomenes elektronstruktur
MENA 1001 – Materialer, energi og nanoteknologi
Utskrift av presentasjonen:

MENA 1000 – Materialer, energi og nanoteknologi MENA 1000; Materialer, energi og nanoteknologi- Kap. 2 Krefter, felt, stråling Kurs-uke 1b Repetisjon fra Fysikk 2 Mekanikk Krefter og bevegelse Krefter og felt Gravitasjonelt Elektrisk Magnetisk Stråling Truls Norby Kjemisk institutt/ Senter for Materialvitenskap og Nanoteknologi (SMN) Universitetet i Oslo FERMIO Forskningsparken Gaustadalleen 21 NO-0349 Oslo truls.norby@kjemi.uio.no MENA 1000 – Materialer, energi og nanoteknologi

I dette kapittelet skal vi lære om… Krefter som virker på og mellom legemer Store legemer (feks kloder, satellitter, biler, menneskekropper) Små legemer (feks elektroner eller protoner) Felt som påvirker legemer med kraft Gravitasjon Elektrisitet Magnetisme Energi Potensiell energi Kinetisk energi Arbeid Stråling Elektromagnetiske bølger Fotoner MENA 1000 – Materialer, energi og nanoteknologi

Greit å kunne litt om krefter og slikt…. MENA 1000 – Materialer, energi og nanoteknologi

MENA 1000 – Materialer, energi og nanoteknologi Krefter og bevegelse Noen begreper om en gjenstand med masse m i bevegelse: Posisjon r og hastighet v ved tid t : Bevegelsesmengde (moment) p: Akselerasjon a: Kraft F: Impuls: F p Her ser vi en kule med masse m. Den beveger seg med hastighetsvektorer v. Den har moment p. Hvis den utsettes for en kraft F opplever den akselerasjon a, og derfor endres v (hastighet og/eller retning). Ingen av disse begrepene er energi. MENA 1000 – Materialer, energi og nanoteknologi

Newtons lover om bevegelse 1. lov: Om et legeme i ro: Vektorsummen av alle krefter som virker på et legeme i ro er null 2. lov: Om et legeme der vektorsummen ikke er null: Endringen per tidsenhet i bevegelsesmengden til gjenstanden er proporsjonal med (netto) kraft som virker på den og har samme retning 3. lov: Om to gjenstander som utøver krefter på hverandre: Krefter fra en gjenstand til en annen opptrer alltid i par; kraft (fra A til B) og en like stor og motsatt rettet motkraft (fra B til A). An object at rest remains at rest and an object in motion continues with a constant velocity in a straight line unless an external force is applied to either object. The acceleration of an object is directly proportional to the net force acting on it, while being inversely proportional to its mass. For every action there is an equal and opposite reaction.                                                      Sir Isaac Newton 1642-1727 MENA 1000 – Materialer, energi og nanoteknologi

MENA 1000 – Materialer, energi og nanoteknologi Øvelse 2-0. Hva er SI-enhetene for masse og tid? Hva er enhetene for størrelsen på hastighet, akselerasjon, bevegelsesmengde, kraft og impuls? Eksempel 2-1: Et svevetog veier 10 000 kg og beveger seg i en lineær bane uten friksjon med en hastighet på 360 km/h. a) Hva er togets bevegelsesmengde? b) I løpet av 60 s ønsker vi å stanse fartøyet helt ved en elektromagnetisk brems som setter opp en kraft mellom toget og underlaget. Hvor stor netto kraft må bremsen yte i fartsretningen? c) Hvor stor er akselerasjonen? Avrund svarene til antall gjeldende sifre. Løsning: a) (2.1) gir p = 10 000 kg  360 km/h  1000 m/km / 3600 s/h = 1 000 000 kgm/s. b) Siden vi skal motvirke hele bevegelsesmengden p har vi fra (2.4) at p = 1 000 000 kgm/s = F  60,0 s, slik at F = 16 667 kgm/s2 = 16 667 N. c) Fra (2.3) har vi a = F/m = 16 667 N / 10 000 kg = 1,6667 = 1,67 m/s2. (Dette er absoluttstørrelsene; hva med retning (fortegn)?) Øv. 2-1. En bil veier 2000 kg. Hvor stor kraft må hjulene tilsammen skyve fra med mot underlaget for å akselerere bilen jevnt fra 0 til 100 km/h i løpet av 10 sekunder? (Hint: bruk for eksempel impuls ΔP.) Se på eksempelet, evt. kontrollregne. Løs så Øvelsen. Fasit/løsningsforslag bak i kompendiumet. MENA 1000 – Materialer, energi og nanoteknologi

Bevegelse i sirkelbane Sirkelbevegelse er et spesielt viktig tilfelle. Vi skal ikke utlede det, men legge merke til karakteristiske trekk. Hvis banehastigheten er konstant i en sirkelbevegelse, har vi Konstant akselerasjon, a; Konstant kraft, F; MENA 1000 – Materialer, energi og nanoteknologi

MENA 1000 – Materialer, energi og nanoteknologi Eks. 2-2. En kule på 1 kg roteres om et sentrum holdt av en snor. Snora er 1 m lang og omløpstiden er 1 sekund. Hva er kraften i snora? Løsning: Banehastigheten på kula finner vi fra omkretsen på banen og tiden: v = 2  3.14  1 m / 1 s = 6,28 m/s. Fra (2.6) har vi F = 1 kg  (6,28 m/s)2 / 1 m = 39,4 N. Øv. 2-2. Anta at et elektron går rundt i en sirkelbane rundt en atomkjerne i en avstand av 1 Å (10-10 m) og at banehastigheten er lik lyshastigheten. Bruk data fra tabellen for konstanter bakerst i kompendiet til å regne ut kraften som holder elektronet i bane basert på klassisk mekanikk.   MENA 1000 – Materialer, energi og nanoteknologi

MENA 1000 – Materialer, energi og nanoteknologi Kinetisk energi Kinetisk energi E = ½ mv2 Skalar. Enhet = J (joule) E = ½ mv2 Eks. 2-3. Hvor mye energi må bremsen i Eks. 2-1 bruke for å stanse toget? Løsning: Energien må tilsvare togets kinetiske energi før oppbremsingen: (2.7) gir E = ½  10 000 kg  (360 km/h  1000 m/km / 3600 s/h)2 = ½  10 000 kg  (100 m/s)2 = 5106 kgm2/s2 = 5106 J = 5103 kJ = 5 MJ. Øv. 2-3. Hvor mye energi kreves for å akselerere bilen i Øv. 2-1 fra 0 til 100 km/h? MENA 1000 – Materialer, energi og nanoteknologi

Elastisk og uelastisk støt Ved støt mellom to legemer: Bevegelsesmengden bevares: Elastisk støt: Kinetisk energi bevares: Uelastisk støt: Kinetisk energi bevares ikke. Men totalenergien bevares (Energibevaringsloven): Eetter = Efør MENA 1000 – Materialer, energi og nanoteknologi

MENA 1000 – Materialer, energi og nanoteknologi Eks. 2-4. En stillestående satellitt i fritt rom som veier 1000 kg skal repareres av en klønete astronaut på 100 kg, som dessverre treffer satellitten med en hastighet på 10 km/h i et fullstendig elastisk støt rett på. Hva blir satellittens hastighet vs etter støtet? Løsning: Vi kaller astronautens hastighet etter støtet for va. Denne er også ukjent og vil måtte være en del av løsningen. Vi har to ukjente og bruker ligningene (2.8) og (2.9). Vi har fra (2.8) at 100 kg  10 km/h = 1000 kg  vs + 100 kg  va og fra (2.9) at ½ 100 kg  (10 km/h)2 = ½ 1000 kg  vs2 + ½ 100 kg  (va)2. Siste ligning løst gir va = (100 – 10 vs2)1/2. Innsatt i første ligning får vi vs = 1,82 km/h. Øv. 2-4. Bilen i Øv. 2-1 kolliderer etter akselerasjonen (utrolig nok...) front mot front med en like tung bil med samme hastighet. Kollisjonen er fullstendig uelastisk. Hva er den totale bevegelsesmengden til de to bilene før og etter kollisjonen? Hva er den totale kinetiske energien før støtet og hvordan kan energien foreligge etter støtet? MENA 1000 – Materialer, energi og nanoteknologi

MENA 1000 – Materialer, energi og nanoteknologi Arbeid. Krefter og felt Arbeid omsetter en energiform til en annen Arbeid gjøres ved bruk av krefter. Arbeid er lik kraft x strekning Dersom kraft endrer seg med strekning: Dersom kraften er konstant og parallell med strekningen: Nærkrefter Krefter som virker mellom legemer i kontakt med hverandre Mekanikk (det vi har sett på hittil) Trykk (virkning av atombevegelser) Fjernkrefter Krefter som virker på grunn av et felt (en gradient i et potensial) Feltene og kreftene kan formidles i alle medier, også vakuum. Utfordring for fysisk forståelse og logikk. To (tre) typer: Gravitasjon Elektromagnetisk felt Elektrisk felt Magnetisk felt w = F·s MENA 1000 – Materialer, energi og nanoteknologi

MENA 1000 – Materialer, energi og nanoteknologi Gravitasjon Newtons gravitasjonslov: Gjenstand med masse m ved jordoverflaten: F = gm der g er tyngdeakselerasjonen; g = 9,8 N/kg = 9,8 m/s2. Cavendish målte  ved hjelp av en blykule i laboratoriet:  = 6.67*10-11 Nm2/kg2 Ved dette kunne man beregne Jordens masse! (=6*1024 kg) MENA 1000 – Materialer, energi og nanoteknologi

Potensiell energi i gravitasjonsfelt Ved jordoverflaten: F = gm ~ konstant Arbeid = økning i potensiell energi ved å endre høyde h: w = Ep = gmh Derfor: Ep med jordoverflaten som referansepunkt er Ep = gmh. Potensiell energi for legeme med masse m i gravitasjonsfelt til legeme med masse M: Referansepunkt uendelig langt ute: Ep = 0 ved r =  w = Ep = gmh MENA 1000 – Materialer, energi og nanoteknologi

MENA 1000 – Materialer, energi og nanoteknologi   Eks. 2-5. Satelitten på 1000 kg kommer inn i gravitasjonsfeltet til Jorden og styrter inn mot overflaten. Hvor stor kinetisk energi har det fått når den befinner seg 1000 km over jordflaten? Løsning: Uendelig langt ute har det potensiell energi lik 0. Ved 1000 km har vi en avstand på 6371 + 1000 = 7371 km fra jordens sentrum og derved Dette tapet i potensiell energi er blitt til kinetisk energi Ekin = 5,4291010 J. Øv. 2-5. Et satellitt på 1000 kg skal skytes ut i det ytre rom. Hvor mye energi kreves som minimum (dvs. for å ende opp med hastighet 0 uendelig langt ute)?   MENA 1000 – Materialer, energi og nanoteknologi

MENA 1000 – Materialer, energi og nanoteknologi Eks. 2-6. En ingeniør planlegger å lagre elektrisk energi ved å pumpe vann fra havet opp i en stor, grunn innsjø som ligger 100 meter over havet. Hvor mye energi koster det (og kan hun få tilbake) per liter vann, når vi ser bort fra eventuelle tap? Løsning: E = w = gmh = 9,8 N/kg  1 liter  1 kg/liter  100 m = 980 J. Øv. 2-6. En vektløfter holder en manual med vekt 10 kg ½ meter over bakken. Så løfter hun den ytterligere ½ meter høyere og holder den der i 1 minutt. Deretter slipper hun den. a) Hvor mye energi kreves for løftet? b) Hvor stor kraft trenger hun å bruke for å holde gjenstanden og c) hvor mye energi koster det å holde den i 1 minutt? d) Hva er hastigheten til gjenstanden idet den treffer bakken? MENA 1000 – Materialer, energi og nanoteknologi

MENA 1000 – Materialer, energi og nanoteknologi Elektrisk felt Charles de Coulomb; kraft mellom to ladde partikler: Der ke = 9,0*109 Nm2/C2. 1 C (Coulomb) = 1 As ladningen som passerer når 1 A strøm går i ett sekund Feltstyrke: Den kraft en ladet partikkel føler per enhet ladning. Retning fra + til -. + q F MENA 1000 – Materialer, energi og nanoteknologi

Elektriske feltstyrkelinjer Vektorer (fra + til -) vinkelrett på ekvipotensielle elektrostatiske linjer Inhomogene felt Eks. kulesymmetrisk felt Homogent felt Platekondensator Figurer: Ekern, Isnes, Nilsen: Univers 3FY. MENA 1000 – Materialer, energi og nanoteknologi

Kulesymmetrisk elektrisk felt + q F MENA 1000 – Materialer, energi og nanoteknologi

MENA 1000 – Materialer, energi og nanoteknologi Eks. 2-7. Vi betrakter et hypotetisk elektron i ro 1 Å fra en atomkjerne med én positiv ladning. a) Hva er den elektrostatiske kraften mellom de to? b) Hva er energien som må tilføres for å fjerne elektronet uendelig langt vekk? Løsning: Fra (2.17) og (2.19) har vi a) F = -9,0109 Nm2/C2  1,60210-19 C  (‑1,60210-19 C) / (10-10 m)2 = 2,31*10-8 N og b) Epot = 9,0109 Nm2/C2  1,60210-19 C  (‑1,60210-19 C) / 10-10 m = -2,31*10-18 J = -14.4 eV. Det må tilføres 2,31*10-18 J = 14,4 eV for å fjerne elektronet (feil fortegn i boka). Øv. 2-7. To små metallkuler henges 10 cm fra hverandre i metalltråder forbundet med en strømkrets. Vi sender 1 μA strøm gjennom kretsen i ett sekund og antar at alle ladningene samles i kulene. Hva er nå kraften mellom kulene?     MENA 1000 – Materialer, energi og nanoteknologi

MENA 1000 – Materialer, energi og nanoteknologi Eksempel; klassisk betraktning av elektronets hastighet og energi i hydrogenatomet + MENA 1000 – Materialer, energi og nanoteknologi

Ioniseringsenergi basert på klassisk betraktning av hydrogenatomet w Etot + MENA 1000 – Materialer, energi og nanoteknologi

Platekondensator; Homogent elektrisk felt Figurer: Ekern, Isnes, Nilsen: Univers 3FY. MENA 1000 – Materialer, energi og nanoteknologi

MENA 1000 – Materialer, energi og nanoteknologi Eks. 2-8. En protonstråle skal avbøyes med en elektrostatisk linse; den passerer i vakuum mellom to parallelle plater som ligger 1 cm fra hverandre. Det ligger 1 kV over platene. Hva er protonenes akselerasjon? Løsning: Feltet over platene er E = 10 V/m. Protonets ladning er elementærladningen, slik at kraften på protonet er F = qE =1,602*10-19 C * 10 V/m = 1,602*10-18 N. Akselerasjonen a = F/m = 1,602*10-18 N / 1,673*10-27 kg = 9,576*108 N/kg (=m/s2). Øv. 2-8. Et elektron befinner seg i vakuum mellom to parallelle plater 1 mm fra hverandre. Det ligger 1 V over platene. Hva er akselerasjonen for elektronet? Hvis elektronet starter stillestående fra den ene platen, hvor lang tid vil det ta før det har nådd frem til den andre platen?     MENA 1000 – Materialer, energi og nanoteknologi

MENA 1000 – Materialer, energi og nanoteknologi Magnetfelt Magnetiske mineraler har vært kjent og brukt i kompasser siden oldtiden, bl.a. i mineralet magnesitt fra Magnesia. Permanente magneter og induserbare magneter. Magneter omgir seg med et magnetisk felt – feltstyrkelinjene er definert å gå fra N (nordpol) til S (sydpol). Ulike poler tiltrekker hverandre. Like poler frastøter hverandre. Jorden er en magnet. Skyldes rotasjon i jernkjernen. N (magnetisk nordpol) ligger nær den geografiske Sydpolen. Magnetfelt på enkelte andre planeter skyldes rotasjon i metallisk H2. Figurer: Ekern, Isnes, Nilsen: Univers 3FY. MENA 1000 – Materialer, energi og nanoteknologi

MENA 1000 – Materialer, energi og nanoteknologi Elektromagnetisme Hans Kristian Ørsted, 1820: Elektrisk strøm induserer magnetisk felt. Årsaken til magnetisme er bevegelse av elektriske ladninger; netto transport eller netto spinn. Elektrisitet og magnetisme hører derfor sammen; elektromagnetisme. Hans Christian Ørsted 1777-1851 André-Marie Ampère 1775-1836 Michael Faraday 1791-1867 Figur: Ekern, Isnes, Nilsen: Univers 3FY. James Clerk Maxwell 1831-1879 MENA 1000 – Materialer, energi og nanoteknologi

MENA 1000 – Materialer, energi og nanoteknologi Spoler Spiralformet leder forsterker feltet. Magnetiserbar kjerne forsterker feltet ytterligere; elektromagnet. Brukes i elektromagneter, motorer, generatorer, og transformatorer. Figurer: Ekern, Isnes, Nilsen: Univers 3FY. MENA 1000 – Materialer, energi og nanoteknologi

MENA 1000 – Materialer, energi og nanoteknologi Ladning i magnetfelt Figur: Ekern, Isnes, Nilsen: Univers 3FY. MENA 1000 – Materialer, energi og nanoteknologi

MENA 1000 – Materialer, energi og nanoteknologi Eks. 2-9. Et elektron kommer med lysets hastighet vinkelrett inn i et magnetfelt på 100 T. Hva er kraften på elektronet? Løsning: Fra (2.26) har vi F = 1.60210-19 C  3108 m/s  100 T = 4,80610-9 N Øv. 2-9. Et elektron har en hastighet på 1000 m/s. Det skal holdes i en sirkelbane med radius 1 m ved hjelp av et magnetfelt. Finn flukstettheten for magnetfeltet.   MENA 1000 – Materialer, energi og nanoteknologi

Nordlys (aurora borealis) og sørlys (aurora australis) Nordlys og sørlys Ladde partikler strømmer ut fra solen Treffer Jordens magnetfelt Avbøyes og akselereres mot polene Treffer atomer og molekyler i atmosfæren Disse ioniseres/eksiteres Lys avgis når elektronene faller ned i grunntilstandene MENA 1000 – Materialer, energi og nanoteknologi

MENA 1000 – Materialer, energi og nanoteknologi Induksjon Dersom en leder beveger seg gjennom et magnetfelt får vi indusert en spenning. Hvis magnetfeltet står vinkelrett på både lederen og hastigheten, blir spenningen: Hvis det går en strøm som resultat av spenningen (forbruk av energi) må vi tilføre arbeid til bevegelsen. Mer generelt: Spenning induseres ved å endre fluksen: Dette kan oppnås ved å endre feltet, flukstettheten eller arealet. Figur: Ekern, Isnes, Nilsen: Univers 3FY. MENA 1000 – Materialer, energi og nanoteknologi

Vekselstrømsgenerator Bruker induksjonsloven (forrige side) til å omsette roterende bevegelse (mekanisk arbeid) til elektrisk vekselstrøm. Arbeidet kan komme fra vannkraftturbin, gassturbin, bilmotor, sykkelhjul, osv. (Kraftverk basert på brenselceller eller solceller vil produsere likestrøm……) Figur: Ekern, Isnes, Nilsen: Univers 3FY. MENA 1000 – Materialer, energi og nanoteknologi

MENA 1000 – Materialer, energi og nanoteknologi Transformator En transformator består av to eller flere spoler Vekselspenning i én spole (primærspolen) induserer spenning i en annen spole (sekundærspolen) i forhold til viklingstallet: Vikling på felles magnetiserbar kjerne (oftest jern) forsterker og formidler magnetfeltet Figur: Ekern, Isnes, Nilsen: Univers 3FY. MENA 1000 – Materialer, energi og nanoteknologi

MENA 1000 – Materialer, energi og nanoteknologi Eks. 2-10. En generator i et kraftverk genererer vekselspenning på 500 V. Vi skal transformere dette opp til 10 kV for transport i kraftlinjer vha en transformator. Denne har 100 viklinger i primærspolen. Hvor mange skal sekundærspolen ha? Løsning: Fra 2.30 har vi Ns = Np Us/Up = 100 * 10 000 / 500 = 2000. Øv. 2-10. Nær sluttbrukerne skal 10 kV vekselspenning fra kraftnettet transformeres ned til 220 V. a) Hva blir viklings-forholdstallet Ns/Np for transformatoren som brukes til dette? b) Hvorfor brukes en høy spenning til transport over lange avstander?     MENA 1000 – Materialer, energi og nanoteknologi

Stråling (elektromagnetisk) Elektromagnetisk stråling består av svingende magnetiske og elektriske felt, vinkelrett på hverandre og på stråleretningen. Forskjellige typer stråling Røntgen, UV, synlig, IR, radio Sendes ut av elektroner i bevegelse; varme (ovn), elektrisk signal (antenne)) men alle er elektromagnetiske Gasser i atmosfæren absorberer stråling Optisk vindu og radiovindu Figurer: Ekern, Isnes, Nilsen: Univers 3FY. MENA 1000 – Materialer, energi og nanoteknologi

Stråling (elektromagnetisk) Figur: W.D. Callister jr.; Materials Science and Engineering MENA 1000 – Materialer, energi og nanoteknologi

Stråling fra sort legeme; Wiens og Stefan-Boltzmanns lover Strålingsintensitet fra et sort legeme, som funksjon av frekvens (eller bølgelengde). Maksimumet finnes ved Wiens forskyvningslov: Mens den totale intensiteten er gitt ved Stefan-Boltzmanns lov: Wilhelm Carl Werner Otto Fritz Franz Wien 1864-1928 Josef Stefan 1835-1893 Ludwig Boltzmann 1844-1906 Figur: Ekern, Isnes, Nilsen: Univers 3FY. MENA 1000 – Materialer, energi og nanoteknologi

MENA 1000 – Materialer, energi og nanoteknologi Røntgenstråling Kortbølget (høyenergetisk) elektromagnetisk stråling Penetrerer de fleste materialer Gjør skade på molekyler og strukturer Dannes når elektroner akselereres mot og kolliderer med anodematerialer i en katodestrålerør (Røntgenrør). Kontinuerlig stråling (bremsestråling) Karakteristisk stråling (for anodematerialet). Wilhelm Conrad Röntgen 1845-1923 Figur: Ekern, Isnes, Nilsen: Univers 3FY. MENA 1000 – Materialer, energi og nanoteknologi

MENA 1000 – Materialer, energi og nanoteknologi Eks. 2-11. Sola har en overflatetemperatur anslått til ca. 5500 °C. Hva er bølgelengden og frekvensen til lyset med høyest intensitet? Hva slags elektromagnetisk stråling er dette? Løsning: Fra (2.32) har vi m = 0,00290 K m / (5500+273) K = 510-7 m = 500 nm. Fra (2.31) har vi f = c/ = 3108 m/s (lyshastigheten) / 510-7 m = 61014 /s. Synlig lys (senter rundt grønt). (Fordeler seg over hele det synlige (resultat hvitt) og med innslag av ultrafiolett.) Øv. 2-11. Et legeme befinner seg ved 1000 °C. Hva er bølgelengden og frekvensen på lyset som avgis med høyest intensitet? Anslå fargen på denne strålingen.     MENA 1000 – Materialer, energi og nanoteknologi

MENA 1000 – Materialer, energi og nanoteknologi Stråling fra Solen Solen Hydrogenbrenning Totalreaksjon: 4 protoner blir til en heliumkjerne + tre typer stråling: 411p = 42He + 2e+ + 2 + 3 Solen gir fra seg energi som stråling og mister litt masse i hht. Einstein: E = mc2 Total effekt: 3,86*1026 W Temperaturen i kjernen: T = 15 600 000 K Temperaturen på overflaten: T = 5800 K max = 0.1 – 1 m MENA 1000 – Materialer, energi og nanoteknologi

MENA 1000 – Materialer, energi og nanoteknologi Stråling til Jorden Jorden 1,496*1011 m (150 millioner km) fra Solen Effekten pr m2 (solarkonstanten S) avtar med kvadratet av avstanden. S (på jordens solside) = 1370 W/m2 30% reflekteres direkte (albedoen), 70% absorberes (på solsiden) Stråling fra Jorden skjer fra hele overflaten på alle sider. Derfor kan Jorden avgi all stråling den mottar, selv om temperaturen er lav. I følge Stefan-Boltzmann burde temperaturen på jordoverflaten være omlag -20°C; max = ca 15 m (infrarødt) Imidlertid sørger CO2 og H2O for mer absorbsjon i dette området enn for sollyset (synlig og ultrafiolett område; O3 og H2O), slik at temperaturen på overflaten er høyere for å oppnå energibalanse. Figur: Ekern, Isnes, Nilsen: Univers 3FY. MENA 1000 – Materialer, energi og nanoteknologi

MENA 1000 – Materialer, energi og nanoteknologi Kvantemekanikk Foto: Solvay-kongressen 1927, Brussel MENA 1000 – Materialer, energi og nanoteknologi

Kvantemekanikk: Problem 1: Fotoelektrisitet Hertz & Hallwachs, ca 1880: Når vi bestråler en overflate med ultrafiolett lys, avgis elektroner fra overflaten. Elektronenes energi øker ikke med intensiteten til lyset. Over en viss bølgelengde til lyset (under en viss frekvens) avgis ingen elektroner. MENA 1000 – Materialer, energi og nanoteknologi

Problem 2: Stråling fra sort legeme Figur: Hemmer: Kvantemekanikk MENA 1000 – Materialer, energi og nanoteknologi

Max Planck, 1900: Energien i lyset er kanskje kvantifisert? 1858-1947 Figur: Hemmer: Kvantemekanikk MENA 1000 – Materialer, energi og nanoteknologi

MENA 1000 – Materialer, energi og nanoteknologi Wunderbar! Einstein: Da kan vi sikkert forklare problemet med fotoelektrisiteten også: Lyset (med kvanter hf) slår løs elektroner og gir dem samme energi. De mister noe energi på vei ut; løsrivningsarbeidet, arbeidsfunksjonen, W, slik at deres kinetiske energi blir Ek = hf - W Hvis hf < W blir Ek < 0; ingen elektroner unnslipper. Med dette hadde Einstein, ved Plancks kvantebegrep, oppklart det fotoelektriske problem. Fotoelektrisitet utnyttes i solceller, og i analyseteknikkene XPS (X-ray Photoelectron Spectrocopy) og UPS (Ultraviolet Photoelectron Spectroscopy) Max Planck Albert Einstein 1879-1955 W varierer fra materiale til materiale Oppgis ofte i eV 1 eV = 1,6022*10-19 J. For et mol elektroner: 1 eV*NA = 96485 J/mol MENA 1000 – Materialer, energi og nanoteknologi

MENA 1000 – Materialer, energi og nanoteknologi Partikler og bølger de Broglie: En partikkel i høy hastighet har også egenskaper som en bølge:  = bølgelengde, m = masse, v = hastighet, h = Plancks konstant og omvendt: En bølge (eks. elektromagnetisk strålekvant) har også egenskaper som en partikkel (eks. foton). Strømmer av elektroner eller nøytroner brukes som bølger, med bølgelengde etter de Broglie, når de benyttes til mikroskopi og diffraksjon. Louis de Broglie 1892-1987 MENA 1000 – Materialer, energi og nanoteknologi

MENA 1000 – Materialer, energi og nanoteknologi Eks. 2-12. Palladium, som har en arbeidsfunksjon (W) på 4,98 eV, bestråles med ultrafiolett lys med en bølgelengde på λ = 200 nm. Regn ut maksimum kinetisk energi på fotoelektronene som sendes ut. Regn ut bølgelengden til disse elektronene. Hva er den lengste bølgelengden på bestrålingen som kan initiere en fotoelektrisk effekt i palladium? Løsning: Bruker 2.31 og 2.36, samt at 1 eV = 1,602210-19 J: Ek (= ½ mev2) = hf – W = h(c/λ) – W = 1,9210-19 J. Bruker 2.37, λ = h/mv, der v finnes fra v = (2Ek/m)1/2. λ = 1,110-9 m = 1,1 nm. Lengste bølgelengde som gir Ek>0 → hf>W → hc/λ>W → λ<hc/W → λ = 248 nm. Øv. 2-12. Arbeidsfunksjonen for kalium er W = 3.58 x 10-19 J. Regn ut største fart fotoelektroner har når overflaten av kalium blir bestrålt med lys med λ = 436 nm.   MENA 1000 – Materialer, energi og nanoteknologi

MENA 1000 – Materialer, energi og nanoteknologi Eks. 2-13. En stråle av nøytroner tas ut fra en atomreaktor. De har en hastighet på 1000 m/s. Hva er bølgelengden og frekvensen til denne strålingen? Løsning: Fra (2.37) og data i tabell over konstanter har vi  = h/mv = 6,62610-34 Js / (1,67510-27 kg  1000 m/s) = 4,07510-10 m. Øv. 2-13. Røntgenstråling med bølgelengde 1 Å (røntgenstråling) kan ses på som lyskvant eller som fotoner. a) Hva blir energien til hvert kvant? b) Hva blir den effektive massen til et slikt foton?     MENA 1000 – Materialer, energi og nanoteknologi

Oppsummering, kapittel 2 Krefter – nærkrefter og fjernkrefter Energibegrep fra dette kapittelet: Bevegelse; Kinetisk energi Felt; Potensiell energi Arbeid I neste kapittel: Nytt energibegrep; Varme (entalpi) Stråling er felt og bevegelse Kvantemekanisk (Relativistisk) MENA 1000 – Materialer, energi og nanoteknologi