Presentasjon lastes. Vennligst vent

Presentasjon lastes. Vennligst vent

1 Kap 04 Datamodellering. 2 Datamodellering -Et språk for å analysere og beskrive virkeligheten. -En metode for å beskrive naturlige sammenhenger i data.

Liknende presentasjoner


Presentasjon om: "1 Kap 04 Datamodellering. 2 Datamodellering -Et språk for å analysere og beskrive virkeligheten. -En metode for å beskrive naturlige sammenhenger i data."— Utskrift av presentasjonen:

1 1 Kap 04 Datamodellering

2 2 Datamodellering -Et språk for å analysere og beskrive virkeligheten. -En metode for å beskrive naturlige sammenhenger i data som skal benyttes i et informasjons-system.

3 3 Objekt ä Et Objekt er en gjenstand eller et begrep som er entydig identifiserbar. Eks:En Bil er et objekt. Denne bilen kan vi identifisere eller gjenkjenne ved identifikasjonen bilnummer siden biler har ulikt bilnummer. Vi sier at ID = bilnummer En Person er et objekt. Personen kan vi identifisere ved hjelp av navn hvis den gruppe personer vi betrakter er slik at ingen har samme navn. Eller vi kan sette ID = fødselsnummer siden dette er unikt. En Vare (eller produkt) er et objekt. ID kan være et varenummer. En Avdeling kan vi betrakte som et objekt. ID kan være avdelingsnummer. Et Tidspunkt kan vi betrakte som et objekt. Her kan vi sette ID = Dato + Klokkeslett.

4 4 Attributt ä Attributt :Med Attributt mener vi en egenskap knyttet til et objekt. Eks:Attributter (egenskaper) knyttet til en Bil kan være: Farge, Vekt, Pris, Årsmodell,... Attributter knyttet til en Person kan være: Alder, Høyde, Vekt, Yrke,... Attributter knyttet til Avdeling kan være: Avdelingsnavn, Salgsbudsjett, Etasje,...

5 5 Verdi ä Med Verdi mener vi verdier som et attributt kan anta. Eks:Attributtet Farge kan anta verdiene: Rød, Blå, Grønn,... Attriubuttet Yrke kan anta verdiene: Fisker, Lege, Snekker,... Attributtet Høyde kan anta verdiene: 180 cm, 150 cm,...

6 6 Entitet ä Med en Entitet mener vi et objekt tilknyttet dets attributter og verdier.

7 7 Objekt / Attributt / Verdi / Entitet Objekt Attributt Verdi Entitet Verdi En gjenstand eller et begrep som er entydig identifiserbar En gjenstand eller et begrep som er entydig identifiserbar Egenskap knyttet til et objekt Egenskap knyttet til et objekt Verdien til et attributt Et objekt tilknyttet dets attributter og verdier Et objekt tilknyttet dets attributter og verdier Bil ID = BilNr Farge Rød PC 12345Rød BegrepFigurDefinisjonEks

8 8 Relasjoner( Sammenhenger ) Nils PC23718 EierEies av

9 9 Relasjoner PersonBil EierEies av EierEies av PersonBil Objekter Entiteter

10 10 Relasjoner 11 1n nm En-til-en1:1 En-til-mange1:n Mange-til-mange1:1

11 11 1:n relasjon 1n Person (Navn) Bil (BilNr) Eies avEier Nilsen Olsen Andersen Olsen Nilsen PC23718 PN11900 DA30980 PN12000 PC10550

12 12 1:n relasjon 1n Person (Navn) Bil (BilNr) Eies avEier Nilsen Olsen Andersen Olsen Nilsen PC23718 PN11900 PC23718 PN12000 PC10550 Galt: Samme bilnummer forekommer flere ganger

13 13 1:n relasjon n1 Person (Navn) Bil (BilNr) Eies avEier Nilsen Olsen Andersen PC23718 PN11900 PC23718

14 14 1:n relasjon n1 Person (Navn) Bil (BilNr) Eies avEier Nilsen Olsen Nilsen PC23718 PN11900 PN12000 Galt: Samme navn forekommer flere ganger

15 15 n:m relasjon nm Person (Navn) Bil (BilNr) Eies avEier Nilsen Olsen Andersen Olsen Nilsen Knutsen PC23718 PN11900 DA30980 PN12000 PC10550 PN11900

16 16 n:m relasjon nm Person (Navn) Bil (BilNr) Eies avEier Nilsen Olsen Andersen Olsen Nilsen Knutsen PC23718 PN11900 DA30980 PN12000 PC23718 PN11900 Galt: Samme kombinasjon av navn og bilnummer forekommer flere ganger

17 17 1:1 relasjon 11 Person (Navn) Bil (BilNr) Eies avEier Nilsen Olsen Andersen Knutsen PC23718 PN11900 DA30980 LH20000

18 18 1:1 relasjon 11 Person (Navn) Bil (BilNr) Eies avEier Nilsen Olsen Nilsen Knutsen PC23718 PN11900 DA30980 PN11900 Galt: Samme bilnummer forekommer flere ganger Galt: Samme navn forekommer flere ganger

19 19 Relasjoner 1:1 1:n n:m

20 20 Objektering av relasjoner Person (Navn) Bil (BilNr) Eies avEier Ved en mange-til-mange-relasjon ( n:m ) mellom to objekter lager vi et nytt objekt av relasjonen. ID i det nye objektet vil være samlingen av ID-ene fra de to opprinnelige objektene. Dette nye objektet vil seinere gi opphav til en ny entitet og en ny tabell i relasjons-databasen.

21 21 n:m relasjon Eksempel Nilsen Storgt 3 Olsen Havnegt 7 Hansen Ekornv 8 Knutsen Tiurv 9 PC Ford PC Volvo PC Renault PC Saab PC Ford PC Ford PC Toyota Person Bil BilEier Nilsen PC Hansen PC Nilsen PC Olsen PC Olsen PC n 1 n

22 22 Objektering av relasjoner FirmaVare Lev FVL En n:m relasjon mellom Firma og Vare gir opphav til et nytt objekt FV. Lev (Leverandør) inngår i en n:m relasjon til FV. Slutt-resultatet blir som vist i figuren til høyre.

23 23 Entiteter-Tabeller Person (PNr) Avd (ANr) Adr Navn Budsj. 1. Grupper sammen objekter til entiteter 2. Overfør entitetene og relasjonene mellom disse til tabeller.

24 24 Entiteter-Tabeller PNRnavnadrANRnavnbudsjett PNRanr PNRnavnadravdANRnavnbudsjett PersonAvd PersonAvd

25 25 Datamodell / Entiteter / Tabeller-Eks 1 A B E F C G D A c d eB f g aB A c d e B f g a AB A B

26 26 Datamodell / Entiteter / Tabeller-Eks 2 A B E F C G D A c d eB f gA B A c d eB f gA B H AHB

27 27 Datamodell / Entiteter / Tabeller-Eks 3 A B E F D G A d eB f gA B C I AICB C H C hC Tabellene blir de samme som entitetene

28 28 Datamodell / Entiteter / Tabeller-Eks 4 A B F H D G E A d e f K A C JI A B K C j C B g B H i H A d e f A A B cKC jCB g hBH iH

29 29 Kino Et litt større eksempel - Tidsobjekter KinoFilm

30 30 Kino Prøver å starte med objektene Kino og Film KinoFilm

31 31 Kino Prøver å starte med objektene Kino og Film KinoFilm Tid

32 32 Kino Prøver å starte med objektene Kino og Film KinoFilm Tid KFT

33 33 Kino Prøver å starte med objektene Kino og Film KFT K1 K2 K3 K4 F1 F2 F1 F2 F1 T1 T2 T3 T2 Ikke mulig. To forskjellige filmer kan ikke samtidig vises i samme kinosal. Konklusjon:Uakseptabel datamodell

34 34 Kino Prøver å starte med objektene Film og Tid FilmTid Kino FTK F1 F2 F3 T1 T2 K1 K2 Konklusjon:Uakseptabel datamodell

35 35 Kino Prøver å starte med objektene Kino (Kinosal) og Tid KinosalTid Forestilling

36 36 Kino Grunnleggende datamodell KinosalTid Forestilling Film Kino

37 37 End


Laste ned ppt "1 Kap 04 Datamodellering. 2 Datamodellering -Et språk for å analysere og beskrive virkeligheten. -En metode for å beskrive naturlige sammenhenger i data."

Liknende presentasjoner


Annonser fra Google