2008 INF3400 Grunnleggende digital CMOS MOS transistor i tverrsnitt Halvleder Silisum:pn overgang:

Slides:



Advertisements
Liknende presentasjoner
Velkommen Innledning - Stig.
Advertisements

2008 INF3400 Interkonnekt Introduksjon INF3400 Interkonnekt Motstand i interkonnekt.
INF3400 Del 13 Teori Interkonnekt. Introduksjon INF3400 Interkonnekt Motstand i interkonnekt.
Felteffekt-transistor FET
Forelesning nr.11 INF 1411 Elektroniske systemer
Forelesning nr.4 INF 1411 Elektroniske systemer
Forelesning nr.5 INF 1411 Elektroniske systemer
Forelesning nr.8 INF 1411 Elektroniske systemer
Forelesning nr.9 INF 1411 Elektroniske systemer
Forelesning nr.5 INF 1411 Elektroniske systemer
Forelesning nr.5 INF 1411 Elektroniske systemer
Forelesning nr.5 INF 1411 Oppsummeringsspørsmål
Forelesning nr.10 INF 1411 Oppsummeringsspørsmål Transistorer INF
Strøm / Resistans / EMS.
Elektriske Anlegg og Høgspenningsteknikk Innleveringsoppgave
Formelmagi 34-1 (34.2) Spenning indusert ved bevegelse (motional emf)
Formelmagi 31-1 Begrep/fysisk størrelse
Formelmagi 30-1 Avledet formel/ grunnleggende sammenheng
Forelesning nr.10 INF 1411 Elektroniske systemer
INF3400 Del 15 Avansert CMOS. Hvordan er fremtiden for CMOS? Introduksjonstidspunkt av ulike teknologier:Transistor lengde, wire pitch og maks. effekt:
INF3400 Del 4 Moderne MOS transistor modell, transient simulering og enkle utleggsregler.
INF3400 Del 4 Moderne MOS transistor modell, transient simulering og enkle utleggsregler.
INF3400 Del 5 Løsningsforslag Statisk digital CMOS.
INF3400/4400 Effektforbruk og statisk CMOS
2007 INF3400/4400 våren 2007 Effektforbruk og statisk CMOS Svak inversjon Når gate source spenningen er lavere enn terskelspenningen: der: Korte kanaler.
INF3400/4400 våren 2007 Grunnleggende digital CMOS
INF3400 Del 3 Oppgaver Utvidet transistormodell og DC karakteristikk for inverter og pass transistor.
INF1400 – Kap 10 CMOS Teknologi. Hovedpunkter MOS transistoren Komplementær MOS (CMOS) CMOS teknologiutvikling CMOS eksempler - Inverter - NAND / NOR.
INF3400 Del 1 Oppgaver Grunnleggende Digital CMOS.
Effektforbruk og statisk CMOS
INF3400 Del 8 Effektforbruk og statisk CMOS. Introduksjon til effektforbruk Effektforbruk: Effektforbruk over en tidsperiode T: Gjennomsnittelig effektforbruk.
Enkel elektrisk transistor modell og introduksjon til CMOS prosess
rπ og gm kalles småsignalparametere
INF3400 Del 5 Teori Statisk digital CMOS. Elmore forsinkelsesmodell NAND3 RC modell: RC modell NANDN: Forsinkelsesmodell:
INF3400 Del 5 Statisk digital CMOS. Elmore forsinkelsesmodell NAND3 RC modell: RC modell NANDN: Forsinkelsesmodell:
2008 INF3400 Grunnleggende digital CMOS Transistor som bryter PÅAV PÅAV Logisk 0 = gnd (V SS ) Logisk 1 = V DD s = source g = gate d = drain Source terminal.
2008 INF3400 Grunnleggende digital CMOS Transistor som bryter PÅAV PÅAV Logisk 0 = gnd (V SS ) Logisk 1 = V DD s = source g = gate d = drain Source terminal.
INF3400 Del 4 Moderne MOS transistor modell, transient simulering og enkle utleggsregler.
INF3400 Del 9 Dynamisk CMOS. Introduksjon til dynamisk CMOS KomplementærPseudo nMOSDynamisk ” Footed ” dynamisk.
INF3400 Del 3,4,5-8 Repetisjon Statisk digital CMOS.
INF3400 Del 8 Oppgaver Effektforbruk og statisk CMOS.
Transistorforsterkere - oppsummering
2008 INF3400/4400 Del 5 Statisk digital CMOS Elmore forsinkelsesmodell NAND3 RC modell: RC modell NANDN: Forsinkelsesmodell:
INF3400 Del Repetisjon Transistor modell. Transistor tverrsnitt: nMOS transistor pMOS transistor.
Magnetronen Viktig komponent i radar og mikrobølgjeovn Enkel modell for virkemåten til magnetronen Går ikkje inn på detaljert forklaring av vekselverknaden.
INF3400 Del 8 Teori Effektforbruk og statisk CMOS.
2008 INF3400/4400 Del 3 Utvidet transistormodell og DC karakteristikk for inverter og pass transistor CMOS inverter og DC karakteristikk CMOS inverter:
INF3400 Del 1 Teori Grunnleggende Digital CMOS. INF3400 Grunnleggende digital CMOS Transistor som bryter PÅAV PÅAV Logisk 0 = gnd (V SS ) Logisk 1 = V.
INF3400 Del 2 Teori Enkel elektrisk transistor modell og introduksjon til CMOS prosess.
INF3400 Del 1 Teori og oppgaver Grunnleggende Digital CMOS.
Forelesning nr.10 INF 1411 Elektroniske systemer Felteffekt-transistorer.
Transistorer og lysdioder - elektronikkens arbeidshester
Sinus 1P Sinus 2P Sinus 1P-Y Trondheim, 6. mai 2014.
Introduksjon til dynamisk CMOS
INF3400 Del 4 Moderne MOS transistor modell, transient simulering og enkle utleggsregler.
Grunnleggende Digital CMOS
INF3400 Del 3 Teori Utvidet transistormodell og DC karakteristikk for inverter og pass transistor.
Introduksjon til dynamisk CMOS
INF3400/4400 Effektforbruk og statisk CMOS
FET (Field Effect Transistor)
INF3400 Del 5 Teori Statisk digital CMOS.
INF3400 Del 9 Oppgaver Dynamisk CMOS.
CMOS fabrikasjonsprosess og utleggsregler
Grunnleggende Digital CMOS
Digital mikroelektronikk Våren 2013
INF3400 Del Repetisjon.
INF3400 Del 5 Teori Statisk digital CMOS.
Felt-Effekt-Transistor FET
Enkel elektrisk transistor modell og introduksjon til CMOS prosess
Kondensator - Capacitor
Utskrift av presentasjonen:

2008 INF3400 Grunnleggende digital CMOS MOS transistor i tverrsnitt Halvleder Silisum:pn overgang:

2008 INF3400 Grunnleggende digital CMOS Transistor tverrsnitt: nMOS transistor pMOS transistor

2008 INF3400 Grunnleggende digital CMOS Tverrsnitt av CMOS inverter

2008 INF3400 Grunnleggende digital CMOS Akkumulasjon, deplesjon og inversjon Under gaten: Akkumulasjon: Deplesjon: Inversjon:

2008 INF3400 Grunnleggende digital CMOS Enkel beskrivelse av MOS transistor Ubiasert: Biasert: Lineært område Metning Lineært område:

2008 INF3400 Grunnleggende digital CMOS Enkel MOS transistor modell 1.AV (cut off): V gs < V t, som betyr at gate source spenningen ikke er tilstrekkelig til at det blir dannet kanal. I ds = 0. 2.PÅ, lineært område: V gs > V t og 0 < V ds < V gs –V t, som betyr at det er dannet kanal som strekker seg fra drain til source. Transistoren er i det lineære området. 3.PÅ, metning: Vgs > Vt og Vds > Vgs –Vt, som betyr at det er dannet kanal på source siden, men ikke på drain siden. Transistoren er i metning.

2008 INF3400 Grunnleggende digital CMOS Enkel transistor modell: Ved kanal, vil gjennomsnittelig spenning over gate kapasitansen være: Gate kapasitansen er avhengig av arealet (kanalen), tykkelsen på det isolerende laget t ox og permitiviteten til det isolerende laget:

2008 INF3400 Grunnleggende digital CMOS Gjennomsnittelig hastighet til ladningsbærere i kanalen vil bli bestemt av det elektriske feltet E over kanalen og ladningsbærernes mobilitet  : Det elektriske feltet er avhengig av spenningen over kanalen Vd s og kanalens lengde L: Tiden det tar for en ladningsbærer å krysse kanalen er gitt av kanalens lengde og ladningsbærernes hastighet: Strøm mellom drain og source kan uttrykkes som den totale mengde ladning i kanalen dividert på tiden som behøves for å krysse kanalen:

2008 INF3400 Grunnleggende digital CMOS I det lineære området kan vi modellere strømmen tilsvarende en motstand: Vi ser først på konduktans: Dette gir modell for motstand: Som kan forenkles til:

2008 INF3400 Grunnleggende digital CMOS I metning vil spenningen over kanalen være begrenset til den spenningen som er tilstrekkelig for å danne kanal på drain siden: Vi kan finne gjennomsnittelig spenningen over kapasitansen i metning ved å erstatte V ds med V dsat : Vi setter inn for V gc og V ds = V dsat i transistor modellen:

2008 INF3400 Grunnleggende digital CMOS Transistormodellen:

2008 INF3400 Grunnleggende digital CMOS pMOS transistormodell: Source Drain

2008 INF3400 Grunnleggende digital CMOS I-V karakteristikker

2008 INF3400 Grunnleggende digital CMOS Oppgave Gitt en nMOS transistor i en 180nm CMOS prosess med bredde W lik 0.36  m og lengde L lik 0.18  m. Anta at tykkelsen på tynnoksid t ox =50Å og at mobiliteten  = 200cm / Vs. Beregn  og gatekapasitans for transistoren: 2 C ox : :: Cg:Cg:

2008 INF3400 Grunnleggende digital CMOS Eksamensoppgave 2005 Gitt enkle transistor modeller for nMOS transistor, skisser strøm som funksjon av V gs for ulike V ds spenninger. Marker terskelspenning, lineært område og metning på skissen. Terskelspenning V t Lineært område Metning