GIS for mineralutvinning

Slides:



Advertisements
Liknende presentasjoner
12.Studienreise nach Finnland,
Advertisements

Kvinner og politikk Kvinnelig valgmobilisering i Nord-Norge: Glasstak eller etterslep? Marcus Buck.
Litt mer om PRIMTALL.
Kap 02, 03 Posisjon – Hastighet – Akselerasjon
Ti måter å ødelegge en CT-undersøkelse av halsen på
Hjemmeoppgave 1: Å høre etter NAVN: ……………………………….. DATO: ……………………….
Grafisk design Visuell kommunikasjon
Bygningsdelstabellen
Teknologi for et bedre samfunn 1 Asbjørn Følstad, SINTEF Det Digitale Trøndelag (DDT) Brukervennlig digitalisering av offentlig sektor.
7. Fysisk arbeidsmiljø Jeg er fornøyd med den ergonomiske utformingen av arbeidsplassen min Jeg er fornøyd med inneklimaet på arbeidsplassen.
1 Arbeidssted, bruk av fasiliteter og - mengde 5.
23 Finn ligningen for det planet  som inneholder linja
3.14 X AXIS 6.65 BASE MARGIN 5.95 TOP MARGIN 4.52 CHART TOP LEFT MARGIN RIGHT MARGIN Plan- og bygningskontoret Plan- og bygningskontoret Innbyggerundersøkelsen.
Møre og Romsdal. 2 Ligger det et bedehus eller et kristelig forsamlingshus (ikke kirke) i nærheten av der du bor? (n=502) i prosent.
NRKs Profilundersøkelse NRK Analyse. Om undersøkelsen • NRK Analyse har siden 1995 gjennomført en undersøkelse av profilen eller omdømmet til NRK.
1 Kap 04 Datamodellering. 2 Datamodellering -Et språk for å analysere og beskrive virkeligheten. -En metode for å beskrive naturlige sammenhenger i data.
3.14 X AXIS 6.65 BASE MARGIN 5.95 TOP MARGIN 4.52 CHART TOP LEFT MARGIN RIGHT MARGIN Tollvesenet Tollvesenet Innbyggerundersøkelsen 2013 Brukerdel.
2. Planter. Del 1 (1–4). Nivå 2. Side 19–24
Kap 05 Betinget sannsynlighet
Fra forelesningene om involveringspedagogikk Et utviklingsarbeid Philip Dammen Manuset er under arbeid.
Oslo kommune Utdanningsetaten Hva er en god elev og en god lærer? Presentasjon av miniundersøkelsen på ungdomsskoler og videregående skoler Høsten 2009.
Gjenfinningssystemer og verktøy II
Databasehåndtering med MySQL
Kapittel 14 Simulering.
GIS for mineralutvinning
Forelesningsnotater SIF8039/ Grafisk databehandling
Eksperter i Team 2005 Gullfakslandsbyen
GIS for mineralutvinning
Foreløpige tall pr Randi Sæther
Oppgave gjennomgang Kap. 3 og 4.
Om Øvelse 7 Stoff relatert til øvelse 7 Generering av tilfeldige tall Bruk ting vi har lært før.
Omlasting og direkteleveranser. LOG530 Distribusjonsplanlegging 2 2 Vi har nå utvidet nettverket med direkteleveranser. Distribusjonen går enten via lagrene.
P-MP modeller. LOG530 Distribusjonsplanlegging 2 2 Det skal opprettes p fasiliteter (lager) for å betjene en gitt mengde kunder. Kundenodene er også potensielle.
P-CP modeller. LOG530 Distribusjonsplanlegging 2 2 Det skal opprettes p fasiliteter for å betjene en gitt mengde kunder. Kundenodene er også potensielle.
R ESULTATER M UNKERUD SKOLE 2012 Nasjonale prøver 5.-8.trinn 2012 Brukerundersøkelsen 2012.
Kap 06 Diskrete stokastiske variable
Chapter 02 Wavelets - Lineær algebra
© Synovate Gjennomført av Synovate 21.august 2008 Catibus uke 33 Norsk Fysioterapeutforbund.
3.14 X AXIS 6.65 BASE MARGIN 5.95 TOP MARGIN 4.52 CHART TOP LEFT MARGIN RIGHT MARGIN Statens vegvesen Statens vegvesen Innbyggerundersøkelsen.
3.14 X AXIS 6.65 BASE MARGIN 5.95 TOP MARGIN 4.52 CHART TOP LEFT MARGIN RIGHT MARGIN Hjemmehjelp Hjemmehjelp Innbyggerundersøkelsen 2013 Brukerdel.
3.14 X AXIS 6.65 BASE MARGIN 5.95 TOP MARGIN 4.52 CHART TOP LEFT MARGIN RIGHT MARGIN Skatteetaten Skatteetaten Innbyggerundersøkelsen 2013.
3.14 X AXIS 6.65 BASE MARGIN 5.95 TOP MARGIN 4.52 CHART TOP LEFT MARGIN RIGHT MARGIN Legevakt Legevakt Innbyggerundersøkelsen 2013 Brukerdel.
3.14 X AXIS 6.65 BASE MARGIN 5.95 TOP MARGIN 4.52 CHART TOP LEFT MARGIN RIGHT MARGIN NAV NAV Innbyggerundersøkelsen 2013 Brukerdel Grafikkrapport.
3.14 X AXIS 6.65 BASE MARGIN 5.95 TOP MARGIN 4.52 CHART TOP LEFT MARGIN RIGHT MARGIN Lånekassen Lånekassen Innbyggerundersøkelsen 2013 Brukerdel.
Klinisk skjema nyrebiopsiregisteret
Statistikk på 20 2 timer PSY-1002
LÆREPLANEN Matematikk Vg2 – hovedprinsipper. Struktur (fra
1 BM-dagen 29.okt BM1 Fysisk miljøplanlegging Studieprogram for Bygg- og miljøteknikk Meny Prosjektoppgaven Arealbruk og befolkning Transport og.
Anvendt statistisk dataanalyse i samfunnsvitenskap
Eiendomsmeglerbransjens boligprisstatistikk Oktober 2010
Eiendomsmeglerbransjens boligprisstatistikk Juni 2010 Norges Eiendomsmeglerforbund og Eiendomsmeglerforetakenes Forening ECON Poyry og FINN.
Eiendomsmeglerbransjens boligprisstatistikk Februar 2011 Norges Eiendomsmeglerforbund og Eiendomsmeglerforetakenes Forening ECON Poyry og FINN.
Fra forelesningene om involveringspedagogikk Et utviklingsarbeid Philip Dammen Manuset er under arbeid.
TEMPORAL GIS, 16. – 17. oktober problemstillinger: Tilstandsovervåking og resultatkontroll i jordbrukets kulturlandskap (3Q): Digitalt markslagskart.
NM i prototyping - Yggdrasil 2014
Virksomhetsrapport Oktober Innhold 1. Oppsummering 2. Hovedmål 3. Pasient 5. Aktivitet 4. Bemanning 6. Økonomi 7. Klinikker 2.
To accompany Quantitative Analysis for Management, 8e by Render/Stair/Hanna 15-1 © 2003 by Prentice Hall, Inc. Upper Saddle River, NJ Kapittel 15.
Elevundersøkelsen ( ) UtvalgGjennomføringInviterteBesvarteSvarprosentPrikketData oppdatert 7. trinnVår , Symbolet (-) betyr.
Metadata - Statens kartverk
GIS for mineralutvinning Belastning: (2F+4Ø+6S) i pr uke.
Objektorientert utforming In 140 Sommerville kap. 12.
1 Trivsel Utvalg Trives svært godt Trives godt Trives litt Trives ikke noe særlig Trives ikke i det hele tatt Snitt Trivsel Brannfjell skole (Høst 2014)
Økoprofil - en miljøvurderingsmetode
Veivalgsanalyse etter Sørlandsmesterskapet i lang (klassisk) distanse 2004.
Presentasjon av data: deskriptiv statistikk
Dagligbankundersøkelsen Fakta Dagligbankundersøkelsen intervju Befolkning 15 år + TNS Gallup Forfatter Bente Pettersen Roar Thorvaldsen.
ArcGIS Introduksjon. ArcGIS Selskapet ESRI utvikler en ”famile” av GIS- programmer som de kaller ArcGIS familien. De mest kjente er: –ArcView –ArcInfo.
Befolkning og arbejdsmarked 7. Mikroøkonomi Teori og beskrivelse © Limedesign
Geografiske informasjonssystem - en definisjon Et geografisk informasjonssystem (GIS) kan defineres som et system basert på datateknologi, for innsamling,
Enkel datainnsamling i kommunal forvaltning
Utskrift av presentasjonen:

GIS for mineralutvinning 1.9.2005 Gis forelesning 2

Innhold i faget Definisjon av GIS til bruk i mineralutvinning Geomatikk – Kartfremstilling - GIS Basiskart Kart i Norge Referanserammer Tematiske kart og modeller Innsamling av geodata Typer geodata i mineralutvinning Datafangst og dataoverføring Lagring av geodata Metadata, modeller av virkeligheten, Prosedyrer for behandling av geodata Evaluering av geodata Datakvalitet / verifisering Romlig analyse (form og variasjon) Presentasjon av geodata Visuelle variable Oppsummering 1.9.2005 Gis forelesning 2

Innhold i faget Definisjon av GIS til bruk i mineralutvinning Geomatikk – Kartfremstilling - GIS Basiskart Kart i Norge Referanserammer Tematiske kart og modeller Innsamling av geodata Typer geodata i mineralutvinning Datafangst og dataoverføring Lagring av geodata Metadata, modeller av virkeligheten, Prosedyrer for behandling av geodata Evaluering av geodata Datakvalitet / verifisering Romlig analyse (form og variasjon) Presentasjon av geodata Visuelle variable Oppsummering 1.9.2005 Gis forelesning 2

Høydereferanse Norske høydereferanser Norsk normalnull Nord-norsk normalnull Men: Dybder – lavvann - Gitt i forhold til lavvann Seilingshøyder (frihøyder) Gitt i forhold til høyvann 1.9.2005 Gis forelesning 2

h = H + N Høydereferanse Geoidehøyden kan beregnes på bagrunn av en geoidemodell ved bl.a en interpolasjon. P Topografi h = Ellipsoidisk høyde (fra GPS) h H Geoide H = Høyde over Geoiden (~Ortometrisk høyde) N GPS-systemet forholder seg til høyder over ellipsoiden. Men vi er interesserte høyder over havet (følger geoiden). Det er ingen fast differanse mellom ellipsoide og geoide (gul farge), derfor må denne omregningen også inngå i transformasjonen. Denne differansen er ca 40m i østlandsområde og ca 32m i Norland. N = Geoidehøyde Ellipsoide h = H + N 1.9.2005 Gis forelesning 2

Temakart - Mineralutvinning Innsamling Lagring Evaluering Presentasjon 1.9.2005 Gis forelesning 2

Innhold i faget Definisjon av GIS til bruk i mineralutvinning Geomatikk – Kartfremstilling - GIS Basiskart Kart i Norge Referanserammer Tematiske kart og modeller Innsamling av geodata Typer geodata i mineralutvinning Datafangst og dataoverføring Lagring av geodata Metadata, modeller av virkeligheten, Prosedyrer for behandling av geodata Evaluering av geodata Datakvalitet / verifisering Romlig analyse (form og variasjon) Presentasjon av geodata Visuelle variable Oppsummering 1.9.2005 Gis forelesning 2

1.9.2005 Gis forelesning 2

Innsamling av geodata - datafangst Direkte måling - GPS - Totalstasjon (TPS) Indirekte måling - Fotogrammetri - Fly - Terrestrisk - Satellittfjernmåling - Laser mapping - Batymetri – (dybdemåling i vann) 1.9.2005 Gis forelesning 2

Datafangst – GPS - Vanlig kodemåling - Differensiel kode - Differensiel faseglattet kode - Differensiel fase 1.9.2005 Gis forelesning 2

Datafangst – GPS - Kodemåling Avstand måles til hver satellitt med hjelp av en tidsvarierende kode Normale GPS mottagare benytter ”billige” klokker. De er mye mindre nøyaktige enn de som er om bord i satellittene.  Feil på mottagerklokken gir feil i signalets gangtid  Feil i posisjon 1.9.2005 Gis forelesning 2

4 avstander for å løse ut lengde, bredde, høyde & tid Datafangst – GPS - Kodemåling Nøyaktighet 10 - 21 m 2 - 21 m uten SA effekten 10 - 100 m med SA-effekten 4 avstander for å løse ut lengde, bredde, høyde & tid 1.9.2005 Gis forelesning 2

Datafangst – GPS - Differensiel kodemåling (DGPS) Når bare Koden benyttes Referansen står over en kjent koordinat  Regne ut korreksjoner på satellittobservasjonene (klokkene). Sende korreksjonsdata fra base til rover. (Evnt. etterprosessere) Nøyaktigheten blir 2m - 5m A B Baslinje vektor Base Rover 1.9.2005 Gis forelesning 2

Datafangst – GPS - Differensiel kodemåling med faseglatting - Faseglatting krever en mottager som kan observere fasen også. - Faseobservasjonen blir brukt til å forbedre kodeløsningen. Nøyaktighet: - Etterprosessering eller sanntid: 30 cm 1.9.2005 Gis forelesning 2

Datafangst – GPS - Differensiel fasemåling Både Fase og kode benyttes  nøyaktigheten 5 mm + 1ppm Kan nå nøyaktighet ned i 3 mm + 0.5 ppm Forutsetter at heltallet (antall hele bølger/faser) kan løses ut (FIX-løsning). Baslinje vektor A B 1.9.2005 Gis forelesning 2

Datafangst – GPS - Nøyaktighet Vanlig håndholdt GPS (vanlig kodemåling) < 21m i 95% av tiden (2-21 m) Med korreksjonsdata (Differensiell kode) EGNOS 5m FM Dark/PocketVRS 1-2m 1.9.2005 Gis forelesning 2

Datafangst – GPS - Nøyaktighet Vanlig håndholdt GPS (vanlig kodemåling) < 21m i 95% av tiden (2-21 m) Med korreksjonsdata (Differensiell kode) EGNOS 5m FM Dark/PocketVRS 1-2m GPS med faseglatting Med korreksjonsdata 0.8 – 0.3 m 1.9.2005 Gis forelesning 2

Datafangst – GPS - Nøyaktighet Vanlig håndholdt GPS (vanlig kodemåling) < 21m i 95% av tiden (2-21 m) Med korreksjonsdata (Differensiell kode) EGNOS 5m FM Dark/PocketVRS 1-2m GPS med faseglatting Med korreksjonsdata 0.8 – 0.3 m GPS - fasemåling 0.05m i 95% av tiden NB! Dette er usikkerheten i horisontalplanet I vertikalplanet er den 1.5 – 2 ganger større. 1.9.2005 Gis forelesning 2

Datafangst – Teodolitt + laser - Vinkel måling Må ha en avstandsmåler i tillegg - Settes gjerne på toppen av teodolitten  Laser og kikkert ikke samme akse 1.9.2005 Gis forelesning 2

Datafangst – TPS (total positioning station) Totalstasjon Integrert Teodolitt Laser avstandsmåler Lagringsenhet (digital målebok) Lite ”fotavtrykk” dvs avstanden måles til et konsentrert område på flaten det måles til. TDM5005 1.9.2005 Gis forelesning 2

Datafangst – TPS (total positioning station) Totalstasjon Gruvemåling 1.9.2005 Gis forelesning 2

Datafangst – TPS (total positioning station) Totalstasjon Gruvemåling 1.9.2005 Gis forelesning 2

1.9.2005 Gis forelesning 2

1.9.2005 Gis forelesning 2

Datafangst – TPS (total positioning station) Motorisert totalstasjon - Teodolitt - Laser avstandsmåler - Lagringsenhet (digital målebok) Kan fjernstyres fra prismet - Søker og låser prismet TDA5005 1.9.2005 Gis forelesning 2

Datafangst – TPS (total positioning station) - Nøyaktighet og rekkevidde - Vinkelmåling: 0.15 mgon - Punktnøyaktighet: ≤ 0.3 mm Reflekterende flater eller reflekterende tape Avstandsnøyaktighet ± 0.5 mm Rekkevidde: 2-180 m CCR (Corner cube reflectors) - Avstandsnøyaktighet ± 0.2 mm Rekkevidde: 2 -600 m 1.9.2005 Gis forelesning 2

Datafangst – TPS (total positioning station) - Nøyaktighet og rekkevidde - Vinkelmåling: 0.15 mgon - Punktnøyaktighet: ≤ 0.3 mm 360º Surveying Prisms (GZR121) - Avstandsnøyaktighet ± 0.5 mm + 2 ppm Rekkevidde: 2 -1300 m Surveying Prisms (GPH1P) - Avstandsnøyaktighet ± 0.5 mm + 2 ppm Rekkevidde: 2 -2500 m 1.9.2005 Gis forelesning 2

Datafangst – Laser mapping - Indirekte metode (fra fly/helikopter) Integrering av Pulslaser (LIDAR) ; sender ut laserpuls og måler gangtid  avstand Inertial reference systems (INS) ; Orden på flyets orientering Global positioning satellite system (GPS) ; Orden på flyets posisjon  Etter-prosessering : INS +GPS  XYZ koordinatene til hver reflekterte laserpuls Nøyaktighet: Høyde: (Absolutt 15 cm, relativ 5 cm) ; XY data ~ 10 cm – 1m Svært rask metode: Flere 1000 punkt/s  10 millioner punkt/time Kommersielt tilgjengelig først de siste 5 år Aktive sensorer (laser ut) i motsetning til foto.  mindre væravhengig, kan ”se” gjennom trær, god selv om lav kontrast/relieff, og kan benyttes om natta. Kan kombineres med for eksempel digital kamera  drapere bilder over terrengmodeller 1.9.2005 Gis forelesning 2

Datafangst – Laser mapping - Indirekte metode (fra fly/helikopter) 1.9.2005 Gis forelesning 2

1.9.2005 Gis forelesning 2

Dataoverføring Overføring - Av digital informasjon - Datafiler fra et format til et annet - Rasterisering (vektor til raster) - Vektorisering (raster til vektor) Av analog informasjon (til digital form) - Attributt informasjon (feltbøker, notater etc.) - Skanning av kart - Digitalisering av kart Prosess Overføring posisjonsdata - Overføring attributt data - Verifisering av data (datakvalitet) og editering - Knytte sammen posisjonsdata og attributt data (kan gjøres under dataoverføringen) 1.9.2005 Gis forelesning 2

Dataoverføring Digitalisering Samkjøre digitaliseringsbordets koordinatsystem med kartets koordinatsystem - 3-4 kjente punkter må defineres på kartet og digitaliseringsbordet Aktivt område: 305 x 457 mm Aktivt område: 1524 mm x 3505 mm Nøyaktighet: ± 0.508 mm 1.9.2005 Gis forelesning 2

Dataoverføring Skanning Informasjon fra analog form til digital raster form - Prisnipp: - Ulik lysintensitet som reflekteres fra papiret som skannes - CCD (Charge Couples Devices) Halvledere som oversetter fra fotonintensitet i lyset til elektronintensitet som kan lagres som en digital verdi Planskanner: A3 (297 x 420 mm) Planskanner: A4 (216x297 mm) Maks dokumentstørrelse: 1067 mm 1.9.2005 Gis forelesning 2

Innsamling i et GIS – forenkling av virkeligheten Formål: Beskrive virkeligheten, ved å samle inn data om den.  Gjør forenklinger, ofte konsentrert om bestemte tema. Går fra virkelighet til modell uansett hvor detaljert vi prøvetar.  All informasjon som ligger i et CAD/GIS er modeller eller utdrag av virkeligheten Modellene kan være gode eller dårlige representasjoner av virkeligheten 1.9.2005 Gis forelesning 2

Innsamling i et GIS – forenkling av virkeligheten Stegene fra virkelighet til analog eller digital representasjon av den Virkeligheten Syn på vikeligheten (konseptuell modell) Abstraksjon av virkeligheten (analog modell) 1.9.2005 Gis forelesning 2

Innsamling i et GIS – forenkling av virkeligheten Gestalt fenomener 1.9.2005 Gis forelesning 2

Innsamling i et GIS – forenkling av virkeligheten Stegene fra virkelighet til analog eller digital representasjon av den Virkeligheten Syn på vikeligheten (konseptuell modell) Abstraksjon av virkeligheten (analog modell) Formalisering av den analoge modellen (romlig data modell) Representasjon av den romlige data modellen i datamaskinen (database modell) Representasjon av database modellen i en fil struktur i maskinens minne (fysisk data modell) Metoder for data håndtering (data manipulasjon modellen) Metoder for presentasjon av de romlige dataene (grafisk modell) 1.9.2005 Gis forelesning 2

Innsamling i et GIS – forenkling av virkeligheten Modell i et CAD/ GIS Virkelighet Virkelighet 1.9.2005 Gis forelesning 2

Innsamling i et GIS – forenkling av virkeligheten To hovedmåter å representere form og posisjon for geodata på (konseptuell modell) Separate enheter (Eks. Hus, veier, gruveganger) Separate, klart atskilte objekter - definere og gjenkjenne - beskrive attributter - definere grensene og posisjonen Kontinuerlige felt (Eks. Temperatur, terrenghøyder, forurensing, mineralisering, bilde) Parametere som varierer innen et område - Ofte antas å variere jevnt og kontinuerlig Forståelse av romlige prosesser, kvalitetsvariasjoner  kontinuerlig felt Offentlig administrasjon & planlegging  Enheter 1.9.2005 Gis forelesning 2

Innsamling i et GIS – forenkling av virkeligheten Separate enheter (objekter) Benytter en av de tre grunnleggende geometriske datatypene - Punkter - Linjer - Arealer (polygoner) Vektor data modell Ofte anbefalt når formen er konstant, mens attributtene varierer - for eksempel eiere av hus. (Vanligst i vanlige GIS systemer) Skala avhengig - en by (punkt til areal) en vei (en til to linjer) 1.9.2005 Gis forelesning 2

Innsamling i et GIS – forenkling av virkeligheten Representasjon av form og posisjon for geodata Kontinuerlige felt Variasjonene gjerne for komplekse til å bli representert av en matematisk funksjon - Må gjerne dele (diskretisere) feltet opp i mindre enheter (tesselasjoner), der hver enhet tilordnes parameterverdier. Tesselasjon av trekanter Teselasjon av kvadrater Tesselasjon av heksagoner Ofte anbefalt når formen varierer, mens attributtene varierer - for eksempel utstrekningen av et vann. (Vanligst i vanlige GIS systemer) 1.9.2005 Gis forelesning 2

Innsamling i et GIS – forenkling av virkeligheten Representasjon av form og posisjon for geodata Kontinuerlige felt TIN (Triangular irregular network) - Oppdeling i irregulære tringulære polygon (arealer)  Raster data modell - Oppdeling i kvadratiske celler (pixler) eller kubiske celler (voxler) 1.9.2005 Gis forelesning 2

Innsamling i et GIS – forenkling av virkeligheten Geologisk eksempel 1.9.2005 Gis forelesning 2

Innsamling i et GIS – forenkling av virkeligheten Geologisk eksempel 1.9.2005 Gis forelesning 2

Innsamling i et GIS – forenkling av virkeligheten Datatyper for representasjon av attributter for geodata Boolske (boolean) verdier - Sann eller usann, 0 eller 1 Nominelle (nominal) verdier - Klassifisering i atskilte kategorier av samme rang rød, grønn eller brun ; marmor, dioritt eller gneis Ordinale (ordinal) verdier - Klassifisering i atskilte kategorier etter rang (ordenstall, rangering) Mohs hardhetsskala Skalare (Scalar) verdier (heltall (integer) eller reelle (Real)) - Intervall skala (konstant intervall, men tilfeldig valgt nullpunkt) - Forholdstalls skala (konstant intervall, og absolutt nullpunkt) Topologiske - Heltall, beskriver relasjonene mellom de forskjellige objektene 1.9.2005 Gis forelesning 2

Innsamling i et GIS – forenkling av virkeligheten Ulike datatyper tillater ulike former for analyse / regneoperasjoner Boolske (boolean) verdier - Logiske operasjoner (som <, >, =, AND, OR) Nominelle (nominal) verdier - Logiske operasjoner, klassifikasjon og identifikasjon Ordinale (ordinal) verdier Logiske operasjoner, klassifikasjon og rangering Skalare (Scalar) verdier Alle logiske og numeriske operasjoner 1.9.2005 Gis forelesning 2

Innsamling i et GIS – forenkling av virkeligheten Grunnleggende prosedyrer for manipulasjon av geodata i et GIS - Data må være knyttet til en enhet representert av punkter, linjer, polygoner eller pixler (voxler) - Disse enhetene betraktes gjerne som internt homogene - Disse enhetene er definert ved, og kan skilles fra hverandre ved sin - geografiske posisjon - attributter (egenskaper) - sammenheng med de andre enhetene (topologi) Boolsk algebra kan benyttes for å utføre logiske operasjoner på enhetene, ut i fra deres posisjon, attributter og topologi. Nye enheter kan lages ved snitt og union av eksisterende enheter Nye attributter kan lages ved logiske og/eller matematiske operasjoner fra eksisterende attributter, geografisk posisjon eller topologi. Enheter med bestemte felles sett av attributter er ofte gruppert sammen i egne lag (layers, data planes, overlays) 1.9.2005 Gis forelesning 2

Lagring av geodata i et GIS Kapasitet Før var datakapasitet et tema. Velge ut de viktigste dataene - Nå er fysisk minne på datamaskiner billig Viktigere med strukturering, fordi det blir for mye data. Tilgjengelighet/bevaring - Dataene er lettere tilgjengelig og har mulighet til å bli bedre bevart når de lagres digitalt. Standardisering - Nødvendig med standardisering av digitale data, siden alle dataene fra for eksempel flere innsamlingsperioder skal sammen i det samme systemet. 1.9.2005 Gis forelesning 2

Lagring av geodata i et GIS - standardisering Nødvendig med standardisering av digitale data, siden alle dataene fra for eksempel flere innsamlingsperioder, gjerne samlet av ulike personer skal sammen i det samme systemet. SOSI (Samordnet opplegg for stedfestet informasjon) Nasjonal standard for lagring og utveksling av digitale geodata Inneholder datadefinisjoner av geografisk informasjon, herunder standardiserte beskrivelser av geometri og topologi, datakvalitet, koordinatsystemer, metadata i form av informasjon om eier, opplesning på data, områdeavgrensning osv. Første gang utgitt i 1987, revideres og utvikles kontinuerlig Skal nå konvergeres mot internasjonale standarder på området - Europeisk standard: CEN/TC 287 - Internasjonal standard: ISO/TC 211  SOSI bli en nasjonal standard (NS) 1.9.2005 Gis forelesning 2

Lagring av geodata i et GIS - standardisering SOSI Arbeidsgruppe Tittel Arbeidsoppgaver - stikkordsmessig Gruppe 1 Teknikker og modeller Referansemodell, terminologi, databeskrivelsesteknikker, overføringsformat, geometri og topologi, spørrespråk ,oppdatering, kvalitet, kataloginformasjon, referansesystemer Gruppe 3 Høyde Fastmerker, høydeinformasjon Gruppe 4 Kyst og vann Kyst og sjø, innsjøer og vassdrag, oljeforvaltning og fiskeriforvaltning Gruppe 5 Kommunalinformasjon Eiendomsdata, administrativ inndeling, adresser ,bygginformasjon, annen situasjonsbeskrivelse (herunder bygningstyper) Gruppe 6 Naturressursdata Markslag, vegetasjon, geologi, reindrift, etc. Gruppe 7a Samferdsel Adressepunkt, vegnett, vegsituasjon, jernbane, lufthavner og lufttrafikk, ledningsnett (energi, tele, vann og avløp, kabelnett) Gruppe 7b Ledningsdata Ledningsnett (energi, tele, vann og avløp, kabelnett) Gruppe 8 Navn Stedsnavn Gruppe 9 Plan Plandata 1.9.2005 Gis forelesning 2

Lagring av geodata i et GIS - standardisering PTEMA 4022 VernNatPkt LTEMA 6103 ? LTEMA 3310 Isbrekant 2213   FTEMA Stein LTEMA SteinOmriss 2900 8000 TTEMA NavneEnhet SkriveMåte SSRForekomst 3000 MarkslagGrenseVann VannflateGenerell 3001 HavFlate KystKontur 3002 LandAreal 3003 Tørrfall TørrfallsGrense 3009 KystSperre 3010 SperrelinjeHavInnsjø 1.9.2005 Gis forelesning 2

Lagring av geodata i et GIS - standardisering Metadata Digital lagring av geodata muliggjør registrering av metadata 1.9.2005 Gis forelesning 2

Lagring av geodata i et GIS - Metadata Hva er metadata ? - Data om dataene (informasjon om dataene) Feks Tittel Dato Opphav - Digitalisert? Innmålt? Frihånd? Nøyaktighet Koordinatsystem UTM? Lokalt? Regionalt? Globalt? Geodetisk datum - ED50, WGS84, EUREF89 Vinkelmålinger i gon eller grader? 1.9.2005 Gis forelesning 2

Lagring av geodata i et GIS - programvare Klassiske GIS programmer, som ArcGis (tradisjonelt 2D) - Gode til å ta vare på geografisk informasjon, attributter og topologi, siden knyttet opp mot en database. Ofte ikke så bra på å modifisere eller lage nye geografiske objekter. CAD programmer , som Microstation (2D og 3D) - Gode til å ta vare på / lagre geografisk informasjon - Ikke god til å ta vare på attributtverider og metadata, hvis programmet ikke er knyttet opp til en database. - Bra til å modifisere den geografiske informasjonen (endre objekter) Bransje programmer, som Gems og Surpac (3D) - 3D planleggings og beslutningsstøtte systemer for mineralindustrien - Knyttet opp mot database - Best av disse på å lage lukkede volumer 1.9.2005 Gis forelesning 2

Lagring av geodata i et GIS - ArcGIS - Dataramme (Layer) - Geo objekt datasett (Feature dataset) (Mappe for prosjektdata) - Geo objekt klasser (Feature classes) Bruker vektor og raster data (Analyse bare på raster data) Data som tegnefiler eller som en geodatabase (all info i databasen) Tilknyttet databaser (Må koble posisjonsdata med attributter) Lett å gjøre spørringer og analyser God på metadata 1.9.2005 Gis forelesning 2

Lagring av geodata i et GIS - ArcGis 1.9.2005 Gis forelesning 2

Lagring av geodata i et GIS - ArcGis 1.9.2005 Gis forelesning 2

Lagring av geodata i et GIS - ArcGis 1.9.2005 Gis forelesning 2

Lagring av geodata i et GIS - Microstation Tegnefilen (dgn) er ordnet i lag (levels) Kan defineres med en bestemt farge, tykkelse og linjetype - Lagene er gjennomsiktig og kan skrus av og på - Mulighet til å legge ulike objekter på de ulike lagene - Kan da skru av og på type objekter alt etter behov - Ingen standard kobling til database, men kan tilknyttes for eksempel Access. 1.9.2005 Gis forelesning 2

Lagring av geodata i et GIS - Microstation 1.9.2005 Gis forelesning 2

Lagring av geodata i et GIS - Gems En database Ordnet i geometriske element typer punkt, linjer, polygoner, borehull og TIN - Mulighet til å se flere objekter sammen - Kan da skru av og på type objekter alt etter behov - Alle data lagret i en database 1.9.2005 Gis forelesning 2

Lagring av geodata i et GIS - Gems 1.9.2005 Gis forelesning 2

Lagring av geodata i et GIS - databaseløsninger Flat struktur (Opprinnelig database struktur) All informasjon i en lang tekstfil (tab delimited file) Lname, FName, Age, Salary|Smith, John, 35, $280|Doe, Jane, 28, $325|Brown, Scott, 41, $265|Howard, Shemp, 48, $359|Taylor, Tom, 22, $250 Relasjonsdatabaser (Standard database løsning, for eksempel Microsoft Access) - Utviklet av E.F. Codd (IBM) i 1970 Informasjonen lagres i tabeller, relatert til hverandre med nøkkelfelt Slik knyttes posisjonsdata opp mot attributtdata. - Benytter programmeringsspråk SQL (structured query language), for eksempel for å utføre spørringer i databasen Objekt-orienterte databaser (Nisjemarked) Objekt-orientert programmering utviklet i 1960-årene av Dahl & Nygaard (Simula) Data definert som en serie unike objekter som organiseres i grupper (objekt klasser) etter en gitt naturlig struktur O-O databaser: Lettere å håndtere, bedre på komplekse data og er raskere. 1.9.2005 Gis forelesning 2

Lagring av geodata i et GIS - databaseløsninger  Hybrider mellom relasjonsdatabaser og objekt-orienterte databaser 1.9.2005 Gis forelesning 2

Data knyttet til borehull Posisjon: - Topp hull Avviksmålinger Attributter - Geologi - Analyser Mineralisering 1.9.2005 Gis forelesning 2

Mineralforekomster – Modellering av form Avviksmålinger 1.9.2005 Gis forelesning 2

Innhold i faget Definisjon av GIS til bruk i mineralutvinning Geomatikk – Kartfremstilling - GIS Basiskart Kart i Norge Referanserammer Tematiske kart og modeller Innsamling av geodata Typer geodata i mineralutvinning Datafangst og dataoverføring Lagring av geodata Metadata, modeller av virkeligheten, Prosedyrer for behandling av geodata Evaluering (analyse) av geodata Datakvalitet / verifisering Innledende data analyse / Romlig analyse Presentasjon av geodata Visuelle variable Oppsummering 1.9.2005 Gis forelesning 2