MEF 1000 – Materialer og energi

Slides:



Advertisements
Liknende presentasjoner
Nyttig energi og fantastisk elektronikk
Advertisements

Varmepumper Av Snorre Nordal Seksjon for læring og lærerutdanning
10 Mobile energikilder 10A Kjemiske reaksjoner og energi
Kap 02, 03 Posisjon – Hastighet – Akselerasjon
ELEKTRISK ENERGI FRA FORNYBARE OG IKKE-FORNYBARE ENERGIKILDER UNGDOMstrinnet vurderingskriterier til underveisvurdering Navn:____________________________________________________________________.
Hva er energi? Energi er det som får noe til å skje.
9(4) Energi Mål for opplæringen er at du skal kunne
Hvorfor satsing innen funksjonelle materialer og nanoteknologi – og hvordan. Professor Helmer Fjellvåg, Kjemisk institutt, Universitetet i Oslo.
Fremtidens energiteknologi
MENA 1000; Materialer, energi og nanoteknologi
Velkommen til Newtondag!
MENA 1000 – Materialer, energi og nanoteknologi
FRA DE FØRSTE ELEKTROKJEMISKE CELLENE TIL DAGENS BATTERIER
Oppsummering til eksamen Kap.1, 3, 4 og 5
MEF 1000; Materialer og energi - Kap. 10 Energikilder
Gassteknisk Senter NTNU – SINTEF
BRENSELCELLA En brenselcelle har svært høy virkningsgrad
Materialer, energi og nanoteknologi
Kap.11 Elektrokjemi.
Introforelesning Semesteroppgave om Dampturbin
Fysikk og teknologi - Elektrisitet
Strøm / Resistans / EMS.
Energieffektivisering – fokus på bygget eller systemet ?
Varmepumpe.
Elektrisk energi fra fornybare og ikke-fornybare energikilder
Innledning til pilot-elevene 13/
Velkommen 7. klasse til Newtondag!
Hva er gasskraft med CO2-innfanging? - 1
Besøk fra Russland Ålesund den 9. 4
MEF 1000 – Materialer og energi
1 Gassteknisk Senter NTNU - SINTEF Gasskraft med CO 2 -håndtering Oversikt og innledning Olav Bolland NTNU Seminar Optimal utnyttelse av naturgass Onsdag.
MENA 1000; Materialer, energi og nanoteknologi - Kap. 10 Energikilder
MENA1000 – Materialer, energi og nanoteknologi
MENA 1000 – Materialer, energi og nanoteknologi
MENA 1000 – Materialer, energi og nanoteknologi
MENA 1000 – Materialer, energi og nanoteknologi MENA 1000 Truls Norby Kjemisk institutt/ Senter for Materialvitenskap og nanoteknologi (SMN) Universitetet.
MEF 1000 – Materialer og energi MEF 1000 Truls Norby Kjemisk institutt/ Senter for Materialvitenskap og nanoteknologi (SMN) Universitetet i Oslo Forskningsparken.
MENA 1000 – Materialer, energi og nanoteknologi MENA 1000 Truls Norby Kjemisk institutt/ Senter for Materialvitenskap og nanoteknologi (SMN) Universitetet.
MENA 1000 – Materialer, energi og nanoteknologi MENA 1000 Truls Norby Kjemisk institutt/ Senter for Materialvitenskap og nanoteknologi (SMN) Universitetet.
MENA 1000 – Materialer, energi og nanoteknologi
MEF 1000 – Materialer og energi MEF 1000 Truls Norby Kjemisk institutt/ Senter for Materialvitenskap og nanoteknologi (SMN) Universitetet i Oslo Forskningsparken.
Oppsummering Klarte dere å løfte opp loddet med vindkraft?
MEF 1000 – Materialer og energi
MENA 1000 – Materialer, energi og nanoteknologi MENA 1000 Truls Norby Kjemisk institutt/ Senter for Materialvitenskap og nanoteknologi (SMN) Universitetet.
Naturfag /7 Redoks-reaksjoner.
Naturfag /8 Elektrokjemi.
Naturfag /8 Elektrokjemi.
Alternativ og ikke riktig så alternativ energi
Naturfag /8 Elektrisitet (og magnetisme)
Varme, uorden og spontanitet
MENA 1000 – Materialer, energi og nanoteknologi MENA 1000 Truls Norby Kjemisk institutt/ Senter for Materialvitenskap og nanoteknologi (SMN) Universitetet.
MENA1000 – Materialer, energi og nanoteknologi MENA1000-Materialer, energi og nanoteknologi- Kap. 10 Energi; kilder, konvertering, lagring Truls Norby.
ENERGI FOR FRAMTIDA - på veg mot ein fornybar kvardag.
Fornybar energi-utbygging - hjelper det klimaet? Professor Ånund Killingtveit CEDREN/NTNU SRN-seminar: Natur, klima og energi Håndtverkeren, Oslo 29. april.
Batterier Virkemåten til Li-baserte celler. Batterier generelt: Et stoff som oksideres (negativ elektrode) Et stoff som reduseres (positiv elektrode)
Velkommen til MG Rover Norge Serviceskolen. MG Rover Norge Serviceskolen Kurs innhold Hva er elektrisk strøm Magnetisme Vekselstrøm og likestrøm Blyakkumulatoren.
Elektrokjemi for Kjemi2 ( kurs Oslo, 3. mars 2011 ) Truls Grønneberg Skolelab – kjemi, UiO.
MENA1000 – Materialer, energi og nanoteknologi
Elektrisitet.
MENA1001 – Materialer, energi og nanoteknologi
6 : Alternativ energi Mål for opplæringen er at eleven skal kunne
Hydrogen Ny teknologi – fremdriftsmiddel
Vestsiden ungdomsskole bygges som plusshus i
Produksjon av elektrisk energi
Utskrift av presentasjonen:

MEF 1000 – Materialer og energi MEF 1000; Materialer og energi - Kap. 11 Konvertering og lagring av energi Kurs-uke 11 Truls Norby Kjemisk institutt/ Senter for Materialvitenskap Universitetet i Oslo Forskningsparken Gaustadalleen 21 N-0349 Oslo truls.norby@kjemi.uio.no MEF 1000 – Materialer og energi

Forenklet energi-flytdiagram med hydrogen Ikke-fornybare Fornybare Kjerne- kraft Geo- varme Solenergi direkte indirekte Kilder Fordeling Lagring Transport Bruk Fossile brensel Sol- varme Foto- voltaisk Bio Vind, bølge, m.m. Vann- kraft Elektrolyse Hydrogen Brenselcelle Motor Varme Elektrisitet MEF 1000 – Materialer og energi

Fra strømning til rotasjon Turbiner; ”propeller” Vindmøller Vann-”møller” MEF 1000 – Materialer og energi

Fra strømning til rotasjon Turbiner for vannkraftverk Fristråleturbin Store fallhøyder Fullturbin Skovler ”Propell” Liten fallhøyde, stor vannføring MEF 1000 – Materialer og energi

Turbiner for ekspanderende gasser Dampturbin Kjel Gassturbin Brennkammer Turbin Kompressor MEF 1000 – Materialer og energi

Fra kjemisk til mekanisk energi; roterende motorer Gassturbin Jetmotor MEF 1000 – Materialer og energi

Fra kjemisk til mekanisk energi; reverserende motorer Dampmaskinen MEF 1000 – Materialer og energi

Fra kjemisk til mekanisk energi Forbrenningsmotorer Reverserende Velkjent 1…n sylindre, 2- eller 4-takter Otto Eksplosjon tennes med gnist Diesel Eksplosjon skjer ved tilstrekkelig kompresjon Roterende Wankel MEF 1000 – Materialer og energi

MEF 1000 – Materialer og energi Sterlingmotoren Lukket gassmengde Ekstern oppvarming og avkjøling Kan bruke mange energityper; alt som avgir varme: brensel, elektrisitet, solvarme… I prinsipp effektiv og stillegående MEF 1000 – Materialer og energi

Virkningsgrad (effektivitet) = avgitt effekt dividert på tilført energi per tidsenhet energi oftest lik varmeinnholdet (reaksjonsentalpi) for brenselet Typisk 20% (bil) til 50% (gassturbin) Tap: Irreversibel termodynamikk, Carnotsyklus Varmetap Ufullstendig brenselutnyttelse Friksjon Tomgang MEF 1000 – Materialer og energi

Avgassrensing og -kontroll For mye luft: NOx For lite luft: Hydrokarboner og sot Feedback til motor og forgasser fra Lambdasensor (pO2) NOx-sensor MEF 1000 – Materialer og energi

MEF 1000 – Materialer og energi Fra mekanisk til elektrisk energi (og omvendt) Generatorer og elektromotorer Generator Spole beveges i forhold til permanentmagneter: Strøm genereres Sykkeldynamo Bildynamo Generator i kraftverk AC Elektromotor Strøm sendes gjennom spole som kan beveges i forhold til permenentmagneter: Bevegelse genereres AC, DC Transportmidler Elbil-motor Starter Pumper, osv… MEF 1000 – Materialer og energi

MEF 1000 – Materialer og energi Fra elektromagnetisk stråling (lys) til elektrisitet Fotovoltaiske celler - solceller Krystallinsk silisium (wafers) 10-20% effektivitet Amorft silisium 5-10% effektivitet Mindre materialforbruk Kan innbakes i polymerer; fleksible celler GaAs Mer egnet båndgap Dyrere teknologi Tandemceller Kombinasjon med solvarmefangere MEF 1000 – Materialer og energi

Fra lys til elektrokjemiske prosesser Fotoelektrokjemiske celler Fotogalvanisk Spenning ved lys på elektrode Fotoelektrolytisk Spalter vann direkte Fotobiologisk (fotosyntese) Grätzel-celler Ledende glasselektroder Halvleder (nano-TiO2) Adsorbert fargestoff (”dye”) Elektrolytt Redokspar (I- / I3-) MEF 1000 – Materialer og energi

Fra kjemisk til elektrisk energi Brenselceller Sir William R. Grove, 1939 H2 + ½ O2 = H2O Svovelsyre som elektrolytt H2 og O2 som brensel Kunne også spalte vann (elektrolysør) MEF 1000 – Materialer og energi

Mange typer brenselceller Eksempler: H2 + luft MEF 1000 – Materialer og energi

MEF 1000 – Materialer og energi Brenselcelle med rent protonledende elektrolytt Proton Conducting Fuel Cell (PCFC) H2 + ½O2 = H2O poly-benzimidasol CsHSO4 Y-dopet BaCeO3 e- - + O2 + N2 H2 anode H+ ione-leder O2 N2 H2O H2 H2O + N2 MEF 1000 – Materialer og energi

Fosforsyre-brenselcelle Phosphoric Acid Fuel Cell (PAFC) 40-45% effektivitet Elektrolytt: kons. H3PO4 Er en H3O+-leder Vann må sirkuleres Elektroder: Porøs C + Pt Brensel: H2 eller pre-reformerte fossile brensel (H2+CO, CO2) Kraftverk i MW-klassen operative Korrosjonsproblemer MEF 1000 – Materialer og energi

Polymer-elektrolytt-brenselcelle 45-50% effektivitet Elektrolytt: Nafion® og lignende Er en H3O+-leder + drag av ca 5H2O Vann må sirkuleres Elektroder: Porøs C + Pt Brensel: Rent H2 Kommersielle i mange sammenhenger Katalysatorforgiftning (CO) Pris MEF 1000 – Materialer og energi

MEF 1000 – Materialer og energi

MEF 1000 – Materialer og energi

MEF 1000 – Materialer og energi PEFC Pro’s Generelt for brenselceller Miljøvennlig Effektiv Fleksibel Modulær Spesielt for PEMFC Rask oppstart Mekanisk robust Con’s Komplisert teknologi Dyrt Nafion Pt Må ha rent H2 som brensel CO-passivering Transport, lagring Lav verdi på spillvarme Forskning Høyere temperatur (mindre Pt, høyere CO-toleranse) Systemer uten vann (N som proton-vert istedet for O) Nye polymerer Nanostruktur i elektroder (mindre Pt nødvendig) MEF 1000 – Materialer og energi

Direkte metanol-brenselcelle DMFC 45-50% effektivitet Elektrolytt: Nafion® og lignende Elektroder: Porøs C + Pt/Ru Brensel: CH3OH(aq) Lav effektivitet Løselighet av metanol i elektrolytten; kjemisk kortslutning God brukervennlighet MEF 1000 – Materialer og energi

Alkalisk brenselcelle 40-50% effektivitet Elektrolytt: KOH(aq) OH- -ioneleder H2O må sirkuleres Elektroder: Porøs C + Pt Brensel: Rent H2 Tidlig konsept Brukt i Apolloferdene London-drosjer MEF 1000 – Materialer og energi

Smeltekarbonat-brenselcelle (MCFC) 45-60% effektivitet Elektrolytt: M2CO3 (sugd opp i porøs LiAlO2) CO22--leder CO2 må sirkuleres Elektroder: Ni anode Li-dopet NiO katode (p-leder) Brensel: Alle Korrosjon MEF 1000 – Materialer og energi

Fastoksid-brenselcelle - Solid Oxide Fuel Cell (SOFC) CH4 + 2O2 = CO2 + 2H2O - + anode O2- ioneleder CH4 N2 O2 e- H2O H2 CO CO2 CO2 H2O O2 + N2 MEF 1000 – Materialer og energi

MEF 1000 – Materialer og energi Punktdefekter MEF 1000 – Materialer og energi

MEF 1000 – Materialer og energi Punktdefekter MEF 1000 – Materialer og energi

MEF 1000 – Materialer og energi SOFC materialer Katode La1-xSrxMnO3 (LSM) Anode Ni-YSZ e- - + O2 + N2 CH4 H2O H2 CO CO2 Bipolar plate Stål La1-xCaxCrO3 anode O2 N2 O2- ioneleder CO2 H2O N2 Katalysatorer Elektrolytt Zr1-xYxO2-x/2 (YSZ) Tettinger Glass/glasskeramer MEF 1000 – Materialer og energi

Eksempel på mikrostruktur MEF 1000 – Materialer og energi

MEF 1000 – Materialer og energi Rørdesign MEF 1000 – Materialer og energi

Siemens-Westinghouse-installasjoner MEF 1000 – Materialer og energi

MEF 1000 – Materialer og energi Planart design MEF 1000 – Materialer og energi

MEF 1000 – Materialer og energi

Rolls Royce design Seriekoblede fragmenter, silketrykket på flate rør MEF 1000 – Materialer og energi

MEF 1000 – Materialer og energi SOFC Pro’s Generelt for brenselceller Miljøvennlig Effektiv Fleksibel, modulær Spesielt for SOFC Brensel-tolerant Høy verdi på spillvarme Integrasjon i prosesser Con’s Komplisert teknologi Dyrt Avanserte keramer Sjeldne grunnstoffer Mekanisk lite robust Lang oppstartstid Degradering ved høy temperatur Forskning Lavere temperatur (mindre korrosjon, rimeligere bipolare plater) Tynnere lag. Bedre katalysatorer. Nye materialer. Protonledende oksider. Prosessintegrasjon. Kombinerte el-varme anlegg med brenselcelle og gassturbin. MEF 1000 – Materialer og energi

Periferikomponenter rundt en brenselcelle Fukteledd/damp Reformere (fossile brensel) Varmevekslere Pre-heating (luft) Conditioning (el) Fra likestrøm til vekselstrøm: Inverter MEF 1000 – Materialer og energi

Potensial og effekt vs strøm for en brenselcelle Eksempel: 1 mm tykk YSZ elektrolytt Ca-dopet LaCrO3 elektroder H2 + luft Brenselutnyttelsesgrad? Elektrisk effekt og virkningsgrad: Pe = G uf Pin MEF 1000 – Materialer og energi

Elektrisk effekt og virkningsgrad Pe = G uf Pin Pe / Pin = G uf G = wel / wtot = G / H Teoretisk kan G være >100% MEF 1000 – Materialer og energi

MEF 1000 – Materialer og energi

Brenselceller; egenskaper Ingen flamme – direkte fra kjemisk til elektrisk energi Mindre NOx I prinsippet Gibbs energi; ingen Carnot-syklus men andre tapsledd Fleksible Modulære Støyfrie Mer effektive ved varierende effektuttak MEF 1000 – Materialer og energi

MEF 1000 – Materialer og energi Elektrolysører Reversert brenselcelle AFC og PEFC-deriverte typer mest utbredt Norsk Hydro Electrolyzers AS AFC Bensinstasjoner med elektrolysør; fra elektrisitet til H2 on-site UiO/HiA: Nanokrystallinske NiPx, NiBx, NiSx for katoder i elektrolysører MEF 1000 – Materialer og energi

Lagring av elektrisk energi Kondensatorer Platekondensator Keramisk kondensator (dielektrika, ferroelektrika) Elektrolyttkondensator Utnytter elektrokjemiske dobbeltlag mellom en elektrolytt og en elektrode Super/ultra-kondensatorer Forbedrede elektrolyttkondensatorer Nano-karbonpartikler Nano-metalloksidpartikler Hybride kondensatorer/batterier MEF 1000 – Materialer og energi

MEF 1000 – Materialer og energi Superkondensatorer Raske effektuttak i elektriske transportmidler MEF 1000 – Materialer og energi

Lagring av elektrisitet Elektrokjemisk konvertering; akkumulatorer Primære batterier Energien lagres av fabrikken Kastes/resirkuleres etter bruk Sekundære batterier = akkumulatorer Kan reverseres; lades opp MEF 1000 – Materialer og energi

Neste generasjon akkumulator; Li-ion-polymer MEF 1000 – Materialer og energi

Metall-luft-batterier Blanding av batteri og brenselcelle Brensel: Metallstaver Al, Zn, Mg Oksidant: Luft evt. luft løst i vann MEF 1000 – Materialer og energi

Lagring av strøm i superledere Superconducting Magnetic Energy Storage (SMES) Likestrøm induseres i en tykk, superledende ring (tyroid) Fortsetter å gå ”uendelig” Kan tas ut ved behov; induserer da strøm i den utenforliggende spolen Brukes i UPS (Uninterruptible Power Supplies) for oppstart+noen sekunder etter strømbrudd Dyrt, men bra! MEF 1000 – Materialer og energi

Hydrogen – fremtidens energibærer Men lagring og transport er dyrt Gass Flytende Hydrogenlagringsmaterialer Metaller og legeringer Alanater, boranater Nanokarbon Hybridmaterialer Flytende hydrogenbærere Alkoholer og andre C-holdige NH3 og andre N-holdige MEF 1000 – Materialer og energi

Andre energilagringsmetoder Makanisk potensiell energi Lufttrykk – tomme gruveganger Vanntrykk – pumping opp til bassenger og sjøer Mekanisk kinetisk energi Løpehjul (flywheel) Superledende magnetisk friksjonsfri opplagring Sikkerhetsaspekt Termisk Varmekapasitet Faseomvandlingsmaterialer MEF 1000 – Materialer og energi

Forbruk, nedbrytning og gjenvinning av materialer Å lage teknologi for fornybar energi koster også energi Degradering Nedbrytning Kostnad ved skrotning Gjenvinning MEF 1000 – Materialer og energi