Presentasjon lastes. Vennligst vent

Presentasjon lastes. Vennligst vent

Kap 16 Lyd. Lydbølger Anvendelser - Akustiske effekter - Sjokkbølger Anvendelse av vekselvirkning mellom bølger: -Stående bølger på et musikkinstrument.

Liknende presentasjoner


Presentasjon om: "Kap 16 Lyd. Lydbølger Anvendelser - Akustiske effekter - Sjokkbølger Anvendelse av vekselvirkning mellom bølger: -Stående bølger på et musikkinstrument."— Utskrift av presentasjonen:

1 Kap 16 Lyd

2 Lydbølger Anvendelser - Akustiske effekter - Sjokkbølger Anvendelse av vekselvirkning mellom bølger: -Stående bølger på et musikkinstrument -Håndtering av støy / Støykontroll -Ultralyd - Søk etter svulster - Ultralyd - Bestemmelse av hjerteaktivitet -Sjokkbølger - Knusing av nyrestein og gallestein (sjokkbølger) -Bestemmelse av jordstruktur vha elastiske bølger i jorden

3 Lydbølger Delfin Delfiner sender ut ultrasoniske lydbølger (10 6 Hz) i form av plystring. Returnert ekko gir delfinen informasjon om omgivelsene i store avstander. Primært benyttes dette til informasjon om føde i form av små fisk.

4 Sammenheng mellom trykk-amplitude og forflytnings-amplitude p max = BkA

5 Eksempel 16-1 Målinger av lydbølger viser at i de høyeste lydene som det menneskelige øre kan tåle, er maksimum trykk-endringer av størrelsesorden 30 Pa over og under atmosfæretrykk p a (p a = x 10 5 Pa ved havet). Bestem maksimal forflytning når frekvensen er 1000 Hz og v = 350 m/s.

6 Intensitet = Gjennomsnittseffekt pr enhetsareal

7 Eksempel 16-2 Finn intensiteten av lydbølgen i eksempel 16-1 med p max = 30 Pa og temperatur 20 0 C.

8 Eksempel 16-3 Hvilken amplitude ved 20 Hz vil gi samme intensitet som 1000 Hz lydbølgen i eksempel 16-1 og 16-2 ?

9 Eksempel 16-4 Hvilken lyd-effekt trengs fra senteret av en halvkule med radius 20 m for å produsere en intensitet på 1 W/m 2 på overflaten av halvkulen? P I

10 Intensitet som funksjon av avstand r1r1 r2r2 I1I1 I2I2

11 Desibel skala [1] Logaritmer 1/ log 1000 = 3

12 Desibel skala [2] Logaritmer I 0 = I1 =  120 I  Intensitet Intensitets-nivå Lyd-nivå

13 Desibel skala [3] Siden øret er følsomt over et så stort område av intensiteter, benyttes ofte en logaritmisk skala. Intensitets-nivå  (enhet desibel) av en lydbølge (kalt lydnivå) er definert ved: I 0 er en referanse-intensitet = W/m 2 = nedre høregrense ved 1 kHz. Intensitets-nivåene uttrykkes i desibel (dB = 1/10 bel).

14 Lyd-intensitets-nivåer Kilde Intensitets-nivå (dB)Intensitet (W/m 2 ) Smertegrense 1201 Trafikkert by-gate Samtale x Rolig bil Rolig radio Hvisking Risling i løv-blader Nedre høre-grense

15 Høring Det normale menneskelige øre er følsomt for lyder med frekvens fra 20Hz til 20000Hz. Høyere frekvenser kalles ultrasoniske. Innen det hørbare frekvensområde er ørets følsomhet avhengig av frekvensen. En lyd med en frekvens kan synes høyere enn en lyd med samme intensitet ved en annen frekvens. FrekvensNedre høregrense Hz0 dB 200 Hz20 dB Hz 20 dB Intensitets-nivå > 120 dB (uavhengig av frekvens) gir smerte. Følsomhet for høye frekvenser avtar med alderen. Noen lyd-miksere tar hensyn til frekvens-følsomheten ved å vektlegge frekvensene ulikt. Lave og høye frekvenser økes i intensitet i forhold til midt-frekvensene.

16 Eksempel 16-5 Ved 10 minutters påvirkning av en 120 dB lyd vil nedre høregrense midlertidig endres fra 0 dB til 28 dB. 10 års påvirkning av en 92 dB lyd vil permanent endre nedre høregrense til 28 dB. Hvilken intensitet svarer til 28 dB og 92 dB ?

17 Eksempel 16-6 Vi tenker oss et idealisert tilfelle hvor en fugl betraktes som en punkt-kilde med konstant plystre-effekt. Med hvor mange dB vil lyd-nivået (intensitets-nivået) synke når vi dobler avstanden til fuglen?

18 Svevning To lyd-kilder med litt avvikende frekvens gir opphav til en resultant-bølge som inneholder varierende amplitude. Frekvensen som resultant-amplituden varierer med kalles svevnings-frekvensen. Svevningsfrekvensen er differensen mellom enkelt-frekvensene

19 Svevning Piano To stk piano spiller samme a-tone med frekvens 440 Hz. Ved å la det ene pianoet endre sin a-tone-frekvens til henholdvis 441 Hz, 442 Hz og 443 Hz, hører vi en svevningstone med økende frekvens. Svevningstonens frekvens er lik differensen mellom frekvensene til de to pianofrekvensene.

20 Doppler-effekt Lytter L beveger seg mot / fra lyd-kilden S samtidig som S også beveger seg.

21 Eksempel 16-7 a) Bestem sirenens bølgelengde når sirenen er i ro. b) Bestem sirenens bølgelengde foran og bak politibilen når v S = 30 m/s. f S = 300 Hz

22 Eksempel 16-8 Bestem frekvensen som L hører. f S = 300 Hz

23 Eksempel 16-9 Bestem frekvensen som L hører. f S = 300 Hz

24 Eksempel Bestem frekvensen som L hører.f S = 300 Hz

25 Doppler-effekt for elektromagnetiske bølger

26 1 2 S1S1 S2S2 r1r1 r2r2 

27 Sjokk-bølger

28 Sjokk-bølger Eksempel Beregn tiden fra flyet passerer rett over L til sjokk-bølgen når frem til L.

29 Musikk [1] Oktav:f on = 2 n-1 f o1 C1 :f C1 = 262 Hz C2:f C2 = 2 x 262 Hz = 524Hz C3:f C3 = 4 x 262 Hz = 1048Hz Frekvensen til en tangent uttrykt ved frekvensen til forrige tangent: f 2 = 2 1/12 f 1

30 Musikk [2] Oktav=1:2 C:G=1:2 7/12 =2:3 C:E = 1:2 4/12 =4:5 C:E:G = 1:2 4/12 :2 7/12 = 4:5:6

31 Musikk [3] Frekvensendring mellom nabotoner: f 2 = 2 1/12 f 1 Toner som ’passer sammen’ har ofte flere harmoniske felles C:G=1:2 7/12 =2: … … GrunntoneOvertoner

32 Musikk [4] Samme frekvens:Størst intensitet høres ut som lavest i frekvens. En musikalsk tone svinger med flere harmoniske frekvenser samtidig (klang-farge). Flere harmoniske => “Skarpere” lyd.

33 ENDEND


Laste ned ppt "Kap 16 Lyd. Lydbølger Anvendelser - Akustiske effekter - Sjokkbølger Anvendelse av vekselvirkning mellom bølger: -Stående bølger på et musikkinstrument."

Liknende presentasjoner


Annonser fra Google