stjerners fødsel, liv og død Trondheim Astronomiske Forening

Slides:



Advertisements
Liknende presentasjoner
Den strålende sola Del 2: Nordlys Foto: Jouni Jussila.
Advertisements

R Coronae Borealis stjerner
Astrofysikk Fysikk 1.
Den sterke kjernekraften virker mellom nabonukleonene ERGO Fysikk 1 Callin mfl s. 217 og Den sterke kjernekraften virker mellom nabonukleonene.
Nordlys Drivhus- effekten Ozonlaget Solvind→
Hvordan er et atom bygd opp?
Stråling fra stjernene Fysikk 1
Knight, Kap.38 Emisjon av lys (lysutsending).
Astrofysikk & Strålingslovene
Wiens forskyvningslov og Stefan-Boltzmanns lov
Sone 1 (aerob) % av makspuls, lav intensitet
Astrofysikk & Strålingslovene
Er universet designet? Kilde: Astronomi nr. 3, mai 2006.
Kilder: Ligger på hjemmesiden  Din side Din side  PC World Norge PC World Norge  Akam.no (1) Akam.no  Akam.no (2) Akam.no (2)  Online Online.
Forurensning og miljø Av: Lena, Iselin og Karoline Vi trenger naturen. Uten trær,planter og dyr hadde vi ikke klart å leve på jorda. Derfor er det viktig.
Trondheim Astronomiske Forening
AST Forelesning 14 Interstellare skyer - flere typer.
SOLA.
Stjernenes fødsel, liv og død Fysikk 1
Planeter utenfor solsystemet
Litt om stjerner og planeter Klikk deg frem .
Kosmologi Om store strukturer i verdensrommet og universets historie.
Videreutdanning astronomi
SOLEN.
Kapittel Z Kjernekjemi.
Stjernenes stråling Forelesning 13 – AST1010 *
VERDENSROMMET Av: Hannah.
STRÅLING Er energi som sendes ut fra en strålingskilde i form av bølger eller partikler. Kan være synlig (lys) og usynlig (radiofrekvens) energi.
Torsdag 1. mars 2012, R2, NTNU - Gløshaugen. Trondheim Astronomiske Forening
Fra lodne tåker til kompakte objekter
Ekstreme objekter i universet: Fra radiobølger til gammastråling
Spektakulære begivenheter knyttet til magnetfelt i det nære verdensrommet Fysikermøtet 2003 Kjartan Olafsson og Rune Stadsnes, Fysisk institutt, Universitetet.
Verdensrommet Her i denne presentasjonen skal vi fortelle om verdensrommet og planetene. Dere skal også lære om andre himmellegemer som stjerner og kometer.
Planteceller og planter
En uendelighet av stjerner og planeter
De 222 mest brukte ordene i det norske språket..
Videreutdanning astronomi
Litt om stjerner og planeter Klikk deg frem .
Kvasarer Kvasarer sender ut mer energi pr sekund enn sola sender ut på 200 år – og de stråler med denne effekten i millioner av år! Kvasarer ble oppdaget.
Universet: Utvidelse og avstander Aktive galakser
Stjerners fødsel, liv og død
Strålingen fra stjernene
Stjernenes sluttstadier
Galakser.
Elektronegativitet. Kjemiske reaksjoner og bindinger
Det store spørsmålet: HVA ER ALT BYGD OPP AV?.
AST1010 – En kosmisk reise Forelesning 4: Fysikken i astrofysikk, del 1.
Tolking av stråling fra verdensrommet
AST1010 – En kosmisk reise Forelesning 17: Melkeveien.
AST1010 – En kosmisk reise Forelesning 19: Kosmologi, del I.
AST1010 – En kosmisk reise Forelesning 13: Innledende stoff om stjerner: Avstander, størrelsesklasser, HR- diagrammet.
De viktigste himmellegemene LINK: 49&selectedLanguageId=1&title=de_viktigste_himmellegemene.
AST1010 – Forlesning 14 Stjernenes liv fra fødsel til død.
Stråling mot jorda. Stråling Bevegelse av energi i form av bølger Sola er hovedkilden til den strålingen jorda mottar Lysstråling har særegne elektriske.
ATMOSFÆREN.
Solsystemet vårt. Jorda sammen med sju andre planeter hører til solsystemet vårt som ligger i galaksen Melkeveien. Planetene befinner seg langt fra hverandre.
AST1010 – En kosmisk reise Forelesning 12: Dannelsen av solsystemet.
Stjernebilder.
Plan for timen: Kapittel 5. Tema:Galakser 1.En kort repetisjon
Hva er kulde og hva er varme.
Forelesning 18: Melkeveien
Forelesning 16: Nøytronstjerner og sorte hull
Forelesning 11: Dannelsen av solsystemet
Elektrisk energi Kapittel 12.
Avstander i universet.
Solsystemet vårt.
Planetslette B r e t t e k a n t Store stjerner
Utskrift av presentasjonen:

stjerners fødsel, liv og død Trondheim Astronomiske Forening Stjernespektra og stjerners fødsel, liv og død Birger Andresen, Trondheim Astronomiske Forening (www.taf-astro-no) Medlemsmøte 5. oktober 2011

Foto: Erlend Rønnekleiv Hovedfokus Stjerneutvikling HR Diagram Spektrum Foto: Erlend Rønnekleiv

Temaer Verktøy / Hjelpemidler Lysstyrker og lysstyrkeskalaer Spektrum og spektralklasser Stjerners farge og fargeindeks Hertzsprung-Russell diagrammet Stjerners fødsel, liv og død Hvordan finne alderen på en stjernehop

Lysstyrkeskalaen Lysstyrken til stjerner måles med en skala som er slik at en forskjell på 5 magnituder tilsvarer en lysstyrkeforskjell på 100. Ett trinn på magnitudeskalaen utgjør derfor en forskjell på 2,512. Skalaen er definert slik at de sterkeste stjernene har en lysstyrke på ca. 0, mens svake stjerner har høye positive lysstyr-ker. Vega er kalibreringsstjerne (0 mag). De svakeste stjernene en person med godt syn kan se ved gode forhold langt unna sjenerende lys er ca. +6,5 mag. Med 14 tommer teleskopet til TAF ser vi på gode kvelder stjerner ned mot lysstyrke +15,5 mag.

Stjerners lysstyrke Tilsynelatende lysstyrke Den lysstyrken vi ser stjernen med på himmelen her fra jorda. Absolutt lysstyrke Den virkelige lysstyrken stjerner har. Denne lysstyrken avtar med avstanden. Vi kan beregne hvor mye lys en stjerne sender ut dersom vi vet avstanden til den og hvor mye gass og støv det er mellom oss og stjernen. Den absolutte lysstyrken til en stjerne er lik den tilsynelatende lysstyrken stjernen hadde hatt dersom den befant seg akkurat 10 parsec = 32.6 lysår unna oss. Sola har en absolutt lysstyrke på 4,83 mag.

Spektrum Kontinuerlig spektrum fra for eksempel glødelampe

Ulike typer spektrum Glødende, faste eller flytende stoffer samt sterkt sammenpressede gasser gir kontinuerlige spektre: F.eks. stjerneatmosfære eller interstellar gass Gass som bestråles av kontinuerlig kilde gir linjespektrum; absorpsjons-spektrum hvis kilden er bak gassen, ellers emisjonsspektrum : Emisjonsspektrum (lyse linjer) Absorpsjonsspektrum (mørke linjer) Hovedanvendelse: Bestemmelse av hvor mye av ulike grunnstof-fer og molekyler som en gasståke inneholder. Hovedanvendelse: Bestemmelse av kjemisk sammensetning av stjerneatmosfærer og gass rundt stjerner.

Emisjonsspektra for utvalgte grunnstoffer Hydrogen Helium Oksygen Nitrogen Silisium Jern Anvendelse: Emisjons- og absorpsjonslinjene, og deres intensitet avslører hvilke grunnstoffer og molekyler som finnes i gasståker og stjernatmos-færer og hvor mye det er av hvert enkelt stoff relativt til f.eks. hydrogen.

Spektralklasser O B A F G K M Guy Oh Be A Fine Girl Kiss Me ..., B9, A0, A1, A2, …, A8, A9, F0, F1, ... Undergrupper Guy Oh Be A Fine Girl Kiss Me

Typiske stjernespektra

Solas spektrum sett fra jordoverflaten (solspektrum modifisert av absorpsjon i vår atmosfære)

Temperaturen på overflaten til en stjerne bestemmer dens farge Stjerners farge Temperaturen på overflaten til en stjerne bestemmer dens farge Stjernens farge Overflatetemperatur (omtrentlig) Rødlig Mindre enn 3500 K Oransje 3500 - 5000 K Celsius = Kelvin - 273 F.eks. 5000C = 5273K 10000C = 10273K Celsius = K - 273 F.eks. 5000 K = 4723C 10000K = 9 723C Gul/gulhvit 5200 - 7000 K Grønnhvit 7000 - 10000 K Blåhvit 10000 - 15000 K Blåfiolett 15000 - 40000 K

Stjerners strålingsfordeling Plancks lov:

Fargeindeks Måler lysstyrken i standardiserte spektralområder Fargeindeks = Forskjellen i to slik områder B–V fargeindeks er mest brukt (rød stjerne har høy positiv B-V fargeindeks, blå stjerne har negativ B–V fargeindeks)

Spektralklasser og fargeindeks

Hertzsprung-Russell diagram Ejnar Hertzsprung & Norris Russell (1910) 41 453 stjerner fra Hipparcos katalogen Betelgeuse Betelgeuse : Absolutt lysstyrke = -5 Spektralklasse M2 Regulus : Absolutt lysstyrke = -0.3 Spektralklasse B7 Capella : Absolutt lysstyrke =0.6 Spektralklasse G2 Sirius : Absolutt lysstyrke = 1.5 Spektralklasse A0 Sola : Absolutt lysstyrke = 5.0 Spektralklasse G2 Capella Regulus Sirius Sola

Hva slags type stjerner dominerer i antall ? 90% av alle stjernene ligger på hovedserien Kvalitetsdata for 41 453 stjerner fra Hipparcos katalogen Resten er stort sett gule og røde kjemper

Ulike stjernetypers ’hjemsted’ i H-R diagrammet

Lysstyrkeklasser Sola = G2 V Rigel = B8 Ia Aldebaran = K5 III

Fase 1 fødsel & barndom : Fase 1 fødsel & barndom : Solas utvikling T Tauri stjerne Fase 1 fødsel & barndom : Fase 1 fødsel & barndom : Kjernereaksjoner starter så smått samtidig som stjernen trekker seg mer sammen (T-Tauri variabel stjerne) En stor gassky trekker seg sammen Stjernen beveger seg mot punkt 2 hvor kjerne-reaksjon overtar som hovedenergikilde Hele denne fasen tar ca. 30 millioner år Sola varmes opp når gassen samles Sola begynner å lyse svakt og rødlig i punkt 1 i H-R diagrammet Stjernen er nå på hovedserien

Stjerners fødested

Overflatetemperatur ca 6000C Solas utvikling Fase 2 (Stabilt liv på hovedserien) : Overflatetemperatur ca 6000C Hydrogen omsettes til helium og energi Denne fasen varer ca. 10 000 millioner år (90% av levetiden) Lysstyrken øker litt i denne fasen

Solas utvikling En stjernes størrelse Strålingstrykk Tyngdekraft Stjernens størrelse bestemmes av balansepunktet mellom tyngde- kraften og strålingstrykket. Stjernen må derfor utvide seg for å ’lette på trykket’ dersom temperaturen i kjernen øker slik at strålingen også øker.

Solas utvikling En stjernes størrelse Tyngdekraft Strålingstrykk Stjernens størrelse bestemmes av balansepunktet mellom tyngde- kraften og strålingstrykket. Stjernen blir rødere når den utvider seg fordi overflaten øker mer enn strålingen slik at temperaturen på overflaten synker selv om temperaturen i kjernen øker. Stjernen må derfor utvide seg for å ’lette på trykket’ dersom temperaturen i kjernen øker slik at strålingen også øker.

Solas utvikling Fase 3 (Overgang til rød kjempestjerne) : Når nesten 10% av stjernen er om- dannet til helium, begynner energi- omsetningen og temperaturen i kjernen å øke raskt. Temperaturen i kjernen blir høy nok til at helium starter å ’brenne’ (helium-flash) når ca. 10% av stjernen er omdannet til helium. Strålingstrykket øker slik at stjernen utvider seg og blir en rød kjempestjerne. Stjernen er nå i punkt 3

Solas utvikling Fase 4 (Kjernekollaps) : Helium-flash’et fører til en delvis kollaps av kjernen, og sola øker gradvis sin overflatetemperatur (blir gulere) samtidig som den sender ut litt mindre energi. Den beveger seg mot punkt 4 i H-R diagrammet.

Solas utvikling Fase 5 (Overgang til større rød kjempestjerne) : Sola begynner nå å utvide seg igjen samtidig som den sender ut enda mer energi totalt. Den beveger seg mot punkt 5 i H-R diagrammet. Den blir en enda større rød kjempestjerne.

Vi får en planetarisk tåke Stjernen beveger seg mot Solas utvikling Fase 6 (Dannelse av planetarisk tåke) : Strålingen fra den svært varme kjernen er nå så sterk at de ytre delene av stjernen blåses vekk med en hastighet på noen titalls km/sekund. Vi får en planetarisk tåke Inne i tåken kommer det til syne en svært varm rest av stjernen. Denne består hovedsakelig av karbon og oksygen omgitt av et tynt lag med helium, og noen ganger litt hydrogen helt ytterst. Stjernen beveger seg mot punkt 6 i H-R diagrammet

Planetariske tåker

Foto: Erlend Langsrud Foto: Erlend Langsrud

Solas utvikling Fase 7 (Avkjøling til hvit dvergstjerne) : Jorda og hvit dverg Kjernereaksjonene har stanset Stjernen avkjøles langsomt og beveger seg mot punkt 7 i H-R diagrammet

Snart ’ferdigbrent’ stjerne etter bare 1-5 millioner år Stjerne med minst 8 solmasser Snart ’ferdigbrent’ stjerne med opprinnelig masse lik 20 solmasser Sola Eta Carinae Rød superkjempe etter bare 1-5 millioner år Jo mer masse stjernen har, desto raskere utvikler den seg.

Foto: E. Langsrud, E. Rønnekleiv & B. Andresen Supernova Foto: E. Langsrud, E. Rønnekleiv & B. Andresen Eta Carinae Foto: Arne Danielsen

Etter supernovaeksplosjonen Typisk masse = ca. 1,4 – ca. 2 solmasser Svart hull Nøytronstjerne Masse > 3 solmasser Typisk diameter = ca. 30 km Typisk masse = ca. 1,4 – ca. 2 solmasser Typisk diameter = 10-20 km

Aldersbestemmelse av stjernehoper Vi utnytter at : Pleiadene (M45) Stjerner med stor masse utvikler seg raskere enn stjerner med liten masse, og vi vet hvor fort. Vi vet hvor på H-R diagrammet stjerner med ulik masse skal ligge når de er på ulike utviklingstrinn Alle stjernene i en og samme åpne stjernehop eller kulehop er tilnærmet like langt fra oss eller kulehop er dannet omtrent samtidig (i astronomisk forstand) Det dannes stjerner av alle størrelser dersom det bare er mange nok totalt Foto: Erlend Langsrud M10

Svært ung hop : Alle stjerner på hovedserien med unntak av noen som er på tur inn på den i nedre høyre hjørne og noen på tur ut mot kjempe-stadiet oppe i venstre hjørne.

Gammel hop : Kun de minste stjernene er på hovedserien. Alle massive stjerner er gått over i kjempestadiet, eller er blitt hvite dverger Turn-off punkt

Aldersbestemmelse av stjernehoper med HR diagram Illustrasjon: Terje Bjerkgård

Eksempler for åpne hoper

Eksempler for kulehoper Ca. 13 milliarder år Ca. 8 milliarder år M3 M5

Eksempler for kulehoper Ca. 14 milliarder år Ca. 14 milliarder år M 92

Eksempler for kulehoper Ca. 13 milliarder år M 15

Oppsummering av stjerneutvikling

Takk for oppmerksomheten Galakse 30 millioner lysår unna som man mener er svært lik Melkeveien Totalt 52 minutter Foto: Erlend Langsrud og meg (TAF) 46