Presentasjon lastes. Vennligst vent

Presentasjon lastes. Vennligst vent

1 www.ntnu.no AktivitetVarighetForegående aktivitet A3- B5- C4A D7B E10B F3E G8C, D I dette eksemplet skal vi gjøre en beregning ved bruk av et AOA-nettverk.

Liknende presentasjoner


Presentasjon om: "1 www.ntnu.no AktivitetVarighetForegående aktivitet A3- B5- C4A D7B E10B F3E G8C, D I dette eksemplet skal vi gjøre en beregning ved bruk av et AOA-nettverk."— Utskrift av presentasjonen:

1 1 AktivitetVarighetForegående aktivitet A3- B5- C4A D7B E10B F3E G8C, D I dette eksemplet skal vi gjøre en beregning ved bruk av et AOA-nettverk basert på informasjonen som er gitt i tabellen. Prosjektet består av 7 aktiviteter. Deres varighet og sekvens er vist i tabellen. Eksempel AOA (Activity On Arc)

2 2 1 Hendelse nr. Seneste tidspunkt Tidligste tidspunkt AktivitetVarighetForegående aktivitet A3- B5- C4A D7B E10B F3E G8C, D For å kunne starte prosjektet må vi ha en starthendelse. For hver av hendelsene har vi delt sirkelen i en øvre og en nedre halvdel. Den øvre representerer hendelsesnummeret. Den nederste delen har vi delt i to deler. I venstre halvdel skal vi skrive det tidligste tidspunktet hendelsen kan inntreffe, og i høyre halvdel skriver vi det seneste tidspunktet hendelsen kan inntreffe.

3 A (3) B (5) C (4) D (7) E (10)F (3) G (8) AktivitetVarighetForegående aktivitet A3- B5- C4A D7B E10B F3E G8C, D Fra informasjonen i tabellen kan vi tegne et nettverk. Linjer representerer aktivitetene i tabellen.Varigheten som står i tabellen er også gitt i parentes i nettverket. Aktivitet A er som vist mellom hendelse 1 og 2, og har en varighet på tre enheter. Aktivitet B har en varighet på fem enheter og går fra hendelse 1 til hendelse 3. Hverken aktivitet A eller B har foregående aktiviteter, og begynner derfor i starthendelsen, hendelse 1. Tilsvarende er opptegnet for aktivitetene C, D, E, F og G. Det er for dette nettverket vi skal utføre en beregning.

4 4 AktivitetVarighetForegående aktivitet A3- B5- C4A D7B E10B F3E G8C, D Seneste tidspunkt Hendelse nr. Tidligste tidspunkt Beregningen gjøres i to trinn. Først går vi forfra og bakover i nettverket. Da skal vi bestemme tidligste tidspunkt for alle hendelsene. I andre trinnet går vi fra siste hendelse og tilbake i nettverket til starthendelsen. I dette trinnet bestemmer vi seneste tidspunkt for alle hendelsene i nettverket A (3) B (5) C (4) D (7) E (10)F (3) G (8)

5 A (3) B (5) C (4) D (7) E (10)F (3) G (8) =15 0+3=3 0+5=5 AktivitetVarighetForegående aktivitet A3- B5- C4A D7B E10B F3E G8C, D I vårt prosjekt har vi ikke sagt noe om starttidspunktet for prosjektet, men vi beregner relativt og sier at prosjektet starter ved tidspunkt 0. Dersom hendelse 1 inntreffer tidligst i tidspunkt 0, kan ikke hendelse 2 inntreffe før aktivitet A er ferdig. 3 er varigheten på aktivitet A. Hendelse 2 kan derfor tidligst inntreffe i tidspunkt 3. Vi skal videre addere fremover i nettverket. Eneste måte å komme til hendelse 3 på er å gjennomføre aktivitet B. Aktivitet B har en varighet på 5, og tidligste tidspunkt for hendelse 3 blir da 5. Hendelse 4 kan bli nådd gjennom aktivitet E. Varigheten på aktivitet E er 10 og tidligste tidspunkt hendelse 4 kan inntreffe er 10 pluss tidligste tidspunkt for hendelse 3 som er 5. Dette gir 15 som tidligste tidspunkt for hendelse 4.

6 A (3) B (5) C (4) D (7) E (10)F (3) G (8) =12 3+4= = =20 20 AktivitetVarighetForegående aktivitet A3- B5- C4A D7B E10B F3E G8C, D For hendelse 5 er det to muligheter å nå dit. Via aktivitet C og via aktivitet D. Hvis vi går via aktivitet C vil tidligste hendelse tidspunkt for hendelse 5 bli 3 pluss varigheten på aktivitet C, som er 4, og vi får 7. Men det var en annen måte å nå til hendelse 5. Ved å gå via aktivitet D blir tidligste hendelse tidspunkt 5 pluss varigheten på aktivitet D som er 7. Vi får da tidligste tidspunkt for hendelse 5 til å bli 12. Vi har to ulike verdier, men begge aktivitetene må være avsluttet før hendelse 5 kan inntreffe. Dette medfører at vi må velge den største av de to verdiene, og tidligste tidspunkt for hendelse 5 blir 12. Det samme gjelder for hendelse 6 hvor vi har to alternative måter å nå dit. Via aktivitet F og aktivitet G. Gjennom aktivitet F får vi 15 pluss 3 som er varigheten til F, og det blir 18. Ved å gå gjennom aktivitet G får vi 12 pluss 8 som er varigheten til G, og da blir 20 tidligste tidspunkt for hendelse 6. Vi har nå to ulike verdier og må velge den største av de. Tidligste tidspunkt for hendelse 6 blir derfor 20. Da har vi fastlagt alle tidligste tidspunkt for hendelsene.

7 A (3) B (5) C (4) D (7) E (10)F (3) G (8) =12 12 AktivitetVarighetForegående aktivitet A3- B5- C4A D7B E10B F3E G8C, D Nå skal vi beregne baklengs i nettverket. Dersom det hadde vært oppgitt eller bestemt en sluttdato for prosjektet, ville vi ført inn denne verdien i høyre halvdel av hendelse 6. Det er ikke angitt noen dato, så vi antar at prosjektet skal bli ferdig så fort som mulig. Vi sier derfor at det seneste tidspunkt hendelse 6 kan inntreffe blir lik det tidligste tidspunktet, og setter 20 som seneste tidspunkt. Vi skal nå gjennomføre en lignende prosess som når vi beregnet tidligste tidspunkt, men nå skal vi subtrahere hele vegen tilbake til hendelse 1. For å nå til hendelse 5 kan vi kun gå gjennom aktivitet G som har en varighet på =17 17 For hendelse 4 går vi fra aktivitet 6 og gjennom aktivitet F med varighet 3. Seneste tidspunkt for hendelse 5 blir derfor 20 minus 8, og det blir 12. Dersom hendelse 5 inntreffer senere enn 12, vil ikke hendelse 6 ha 20 som seneste tidspunkt. Seneste tidspunkt for hendelse 4 blir 20 minus 3 som gir 17.

8 A (3) B (5) C (4) D (7) E (10)F (3) G (8) = = = =0 8-3=5 0 AktivitetVarighetForegående aktivitet A3- B5- C4A D7B E10B F3E G8C, D Hendelse 3 er litt lik hendelse 5 og 6 når vi regnet forover. Seneste tidspunkt for hendelse 3 må velges av to alternativer, da det er to aktiviteter som går fra hendelse 3. Først går vi fra hendelse 4, og får 17 minus 10, som er varigheten på aktivitet E. Dette gir seneste tidspunkt lik 7 for hendelse 3. Men vi må også se på det andre alternativet, og går fra hendelse 5. Vi får da 12 minus varigheten for aktivitet D som er 7, og det blir 5. Vi har da verdiene 5 og 7, og må velge den minste verdien. Seneste tidspunkt for hendelse 3 blir derfor 5. Til hendelse 2 er det kun gjennom aktivitet C vi kan gå, og vi får da 12 minus varigheten til C som er 4. Det resulterer i seneste tidspunkt lik 8 for hendelse 2. For hendelse 1 har vi igjen et tilfelle med to alternativer. Fra hendelse 2 har vi 8, og trekkes varigheten til aktivitet A, som er 3, får vi 5. Men vi må se på det andre alternativet også. Ved å starte i hendelse 3 med 5 og subtrahere varigheten til aktivitet B på 5, får vi seneste tidspunkt for hendelse 1 lik 0. Vi har igjen to verdier, 0 og 5, og må velge den laveste av dem.

9 9 Vi har nå foretatt beregninger for hendelsene til prosjektet, og skal nå se på beregninger for aktivitetene. Dette gjør vi i en tabell. Først lister vi opp alle aktivitene i en kolonne til venstre. I kolonnen ved siden av er de respektive varighetene vist. For eksempel har aktivitet A en varighet på 3. Nå skal vi beregne tidligste start for alle aktivitetene. Denne verdien er betegnet ES, av engelsk early start. Tidligste tidspunkt for samtlige aktiviteter kan vi ta fra nettverket ved å se på tidligste tidspunkt for starthendelsen for hver aktivitet. Vi ser ut fra nettverket at aktivitet A og B har hendelse 1 som starthendelse, hvor tidligste tidspunkt er 0. Det vil si at tidligste start for aktivitet A og B er 0. Både aktivitet D og E har hendelse 3 som starthendelse, hvor tidligste tidspunkt er 5. Aktivitet C har hendelse 2 som starthendelse, og tidligste start for aktivitet C blir derfor 3. Aktivitet F har hendelse 4 som starthendelse, og tidligste start for aktivitet F blir da 15. Tilsvarende har aktivitet G hendelse 5 som starthendelse, og det gir 12 som tidligste start for aktivitet G.

10 10 Nå skal vi beregne tidligste tidspunkt aktivitetene kan være ferdig. Disse tidspunktene føres i kolonnen under EF, av engelsk early finish. For å finne denne verdien tar vi utgangspunkt i tidligste tidspunkt for starthendelsen og legger til varigheten på aktiviteten. Da tidligste start for aktivitetene var lik tidligste tidspunkt for starthendelsen, kan vi nå finne EF ved å addere ES og varigheten til aktiviteten. For aktivitet A får vi 0 pluss 3, og det gir EF lik 3. Dette gjøres tilsvarende for alle de resterende aktivitetene. Aktivitet C har hendelse 2 som starthendelse, og tidligste start for aktivitet C blir derfor 3. For aktivitet B blir EF 5 pluss 0, og det gir EF lik 5. EF i =ES i +t i

11 11 Nå er vi ferdig med tidligste start og tidligste slutt for alle aktivitetene. Vi vil videre se på seneste start og seneste slutt. Først ser vi på seneste slutt, LF etter engelsk latest finish. Denne verdien kan vi også finne direkte fra nettverksdiagrammet. Det seneste tidspunkt en aktivitet kan slutte, er det samme som det seneste tidspunkt for slutthendelsen til aktiviteten. Aktivitet A har hendelse 2 som slutthendelse, og det seneste tidspunkt hendelse 2 kan inntreffe er 8. Seneste slutt for aktivitet A blir derfor 8. For aktivitet E er hendelse 4 slutthendelsen og seneste slutt blir 17. Hendelse 5 er slutthendelse for både aktivitet C og D, og dette gir seneste slutt på 12 for begge aktivitetene. For aktivitet B er hendelse 3 slutthendelsen, som har seneste tidspunkt lik 5, og seneste slutt for aktivitet B blir da 5. Aktivitet F og G har hendelse 6 som slutthendelse, og begge aktivitetene får da seneste slutt 20.

12 12 Nå gjenstår det å beregne seneste start for aktivitetene. I tabellen er dette LS, etter engelsk latest start. Seneste start er tidspunktet for seneste slutt minus varigheten til aktiviteten. For aktivitet A blir det 8 minus 3, som blir 5. 8 er seneste slutt og 3 er varigheten til aktiviteten. For aktivitet C blir seneste start 8 da, 12 minus 4 er 8. Aktivitet B har seneste slutt lik 5 og en varighet på 5. Dette gir en seneste start lik 0. Tilsvarende blir gjort for de resterende aktivitetene. LS i =LF i -t i

13 13 Nå har vi beregnet nok data til å vite når hver hendelse senest og tidligst inntreffer. Vi vet også når aktivitetene tidligst og senest kan starte og avslutte. Vi har funnet ut at prosjektet blir ferdigstilt i dag 20. Hvilke aktiviteter er det som innvirker på denne sluttdatoen? Hvilke aktiviteter har betydning for bestemmelse av sluttdatoen? Fl i =LF i -Es i -t i =LF i -(Es i +t i ) =LF i -Ef i Fl i =(LF i -t i )-ES i =LS i -ES i Dette kan vi avgjøre ved å se på de ulike aktivitetenes flyt. For å beregne flyt for en aktivitet, tar vi utgangspunkt i seneste tidspunkt for slutthendelsen og trekker fra tidligste tidspunkt for starthendelsen til aktiviteten. Da har vi det totale tidsrommet aktiviteten skal gjennomføres innenfor. Fra dette trekker vi så fra aktivitetens varighet, og den resterende verdien kalles flyt. Flyten er da overskuddstiden, som representerer vår planleggingsfrihet for den enkelte aktivitet. I vårt tilfelle blir flyt, FL (av engelsk flow) lik LF minus ES minus varigheten til aktiviteten t.

14 14 For aktivitet A har vi LF lik 8 minus EF lik 3, som gir en flyt på 5. Aktivitet C har 5 i flyt, da LF er 12 og EF er 7. For aktivitet B blir flyten 5 minus 5 = 0.Tilsvarende blir gjort for de resterende aktivitetene. Fl i =LF i -Es i -t i =LF i -(Es i +t i ) =LF i -Ef i Fl i =(LF i -t i )-ES i =LS i -ES i Nå har vi to ekvivalente formler for å regne ut flyten. Vi benytter nå LF minus EF i dette eksemplet.

15 A (3) B (5) C (4) D (7) E (10)F (3) G (8) Kritiske aktiviteter er B, D og G, som alle har null i flyt. Vi kan trekke en sammenhengende kjede av kritiske aktiviteter fra første hendelse til siste hendelse. Denne kjeden som går gjennom aktivitet B, D og G kaller vi kritisk veg. Legg merke til at flyten som vi snakker om gjelder en kjede i nettverket. For eksempel aktivitet E og F ligger i en kjede mellom hendelse 3 og 6. De har begge to dager i flyt, men vi kan ikke disponere 2 dager i flyt på begge samtidig. Flyten gjelder for begge aktivitetene til sammen. 2 dager på E, 2 dager på F eller én på hver av de. Det samme gjelder for kjeden A og C. Begge aktivitetene har en flyt på 5. Noen av aktivitetene har null flyt. Det vil si de har ingen planleggingsfrihet og de kan ikke skyves på. Disse aktivitetene kaller vi kritiske aktiviteter. De med positiv flyt kan vi skyve på uten at det får konsekvenser for sluttdatoen.


Laste ned ppt "1 www.ntnu.no AktivitetVarighetForegående aktivitet A3- B5- C4A D7B E10B F3E G8C, D I dette eksemplet skal vi gjøre en beregning ved bruk av et AOA-nettverk."

Liknende presentasjoner


Annonser fra Google