Presentasjon lastes. Vennligst vent

Presentasjon lastes. Vennligst vent

Yuta Michimura Department of Physics, University of Tokyo

Liknende presentasjoner


Presentasjon om: "Yuta Michimura Department of Physics, University of Tokyo"— Utskrift av presentasjonen:

1 Yuta Michimura Department of Physics, University of Tokyo
JGW-T May 4, 2019 Interferometer Layout for Both IR and Green Beams, With and Without ITMs Yuta Michimura Department of Physics, University of Tokyo

2 Default by IR Sapphire ns=1.754 for 1064 nm ns=1.772 for 532 nm
Fused Silica nf=1.450 for 1064 nm nf=1.461 for 532 nm Lengths Larm=3000 m Lmx= m Lmy= m Lp3= m Ls3= m Ltms=8.3 m ETMY 0.05deg 0.025deg ITMY PR3 0.08deg BS ITMX 0.025deg ETMX 0.05deg SR3

3 IR Full Calculation consistent with default layout at 10-4 m level
xt=x-Ltms*sinθyt = m θyt=arcsin(ns*sinwETM)-wETM =658 urad Calculation consistent with default layout at 10-4 m level This can be derived from wBS and wITM. Assuming BS incident angle to be ~π/4, θbs=arcsin(nf*sin(arcsin(sin(π/4)/nf)+wBS))-wBS-π/4)/2-θy = (a-1)*wBS/2-θy, where a=√(nf2-sin2(π/4))/cos(π/4) ETMY 0.05deg yp=Lp3*sin(θin) = m x=-Lmy*sin(θy) = m 0.025deg ITMY θbs’= deg =135 deg-θbs θy=arcsin(ns*sinwITM)-wITM =329 urad ybs=-dBS/cos(θr)*sin(θox) = m PR3 θxt=arcsin(ns*sinwETM)-wETM =658 urad 0.08deg BS θin=θy+2*θbs =775 urad θoy=π/4-θbs-θr = deg yt=y-Ltms*sinθxt = m θr=arcsin(sin(π/4-θbs-θy)/nf) = deg ITMX 0.025deg ETMX 0.05deg y=ybs+Lmx*sin(θx) = m xbs=dBS/cos(θr)*sin(θoy) = m θx=arcsin(ns*sinwITM)-wITM =329 urad θs=π/4-θbs-wBS-arcsin(nf*sin(θr-wBS)) = 1429 urad SR3 xs=xbs+Ls3*sin(θs) = m θox=π/4+θbs-θr = deg

4 IR w/o ITMs See JGW-T1807652 for calculation except for TMS
Δxt ~ -Ltms*Δθyt =-6.9 um (so small) Beam position change at TMS will be very small (even if there is no ETM). 3 km arm assures tiny incident angle to ETM. Δθyt ~ Δθey =0.833 urad See JGW-T for calculation except for TMS ETMY 0.05deg Δθey~Δx/Larm = urad Refraction angle by BS wedge stays the same; θbsr ~ (a-1)*wBS, where a=√(nf2-sin2(π/4))/cos(π/4) = 1103 urad Δx~Lmy*Δθin-Δox = m 0.025deg ITMY Δθex~Δy/Larm = 4.65 urad PR3 0.08deg BS To compensate no wITM Δθin~θx = 329 urad Δθxt ~ Δex = 4.65 urad Δyt ~ Ltms*Δθxt = 38.6 um (so small) Δox~Δoy~Lp3*δθin = m ITMX 0.025deg ETMX 0.05deg Δy~(Lp3+Lmx)*Δθin = m Compared with IR Full SR3

5 from PR, aligned to both ends
Green w/o ITMs from PR, aligned to both ends IR at both ends and green from PR going to both ends are not compatible ETMY 0.05deg Δθey~Δx/Larm = urad Refraction angle by BS wedge changes. θbsr532 ~ (a532-1)*wBS where a=√(nf5322-sin2(π/4))/cos(π/4) θbsr532 ~ 1128 urad Δx~Lmy*Δθin-Δox = m 0.025deg ITMY Δθex~Δy/Larm = urad PR3 To compensate θbsr change, Δθin ~ θbsr532-θbsr = 24.9 urad 0.08deg BS Δox~Δoy~Lp3*Δθin = m ITMX 0.025deg ETMX 0.05deg Δy~Δoy = m Compared with IR w/o ITMs SR3

6 from PR, aligned to IR beam
Green w/o ITMs from PR, aligned to IR beam IR at both ends and green from PR going to both ends are not compatible ETMY 0.05deg 0.025deg ITMY PR3 0.08deg BS ITMX 0.025deg ETMX 0.05deg Δye=(Larm+Lmx+Lp3)*(θbsr532-θbsr) =0.076 m Compared with IR w/o ITMs SR3

7 Green X Full Compared with IR Full ETMY 0.05deg Δyp ~ -Δox+Lp3*Δθin
ITMY Δθxt=θxt532-θyx ~ (ns532-ns)*wETM =15.7 urad PR3 0.08deg BS Δθin=-Δθx+θbsr532-θbsr = urad Δyt=-Ltms*Δθyt = m Δox~Δoy~Lmx*Δθx = m ITMX 0.025deg ETMX 0.05deg Δθx=θx532-θx ~ (ns532-ns)*wITM =7.85 urad Compared with IR Full SR3

8 Green Y Full Compared with IR Full Δxt=-Ltms*Δθyt =-0.00013 m
Δθyt=θyt532-θyt ~ (ns532-ns)*wETM =15.7 urad ETMY 0.05deg 0.025deg ITMY PR3 Δθy=θy532-θy ~ (ns532-ns)*wITM =7.85 urad 0.08deg BS Δox~Δoy~Lmy*Δθy = m ITMX 0.025deg ETMX 0.05deg Δθs=Δθy+θbsr532-θbsr = urad Compared with IR Full SR3 Δxs ~ Δox+Ls3*Δθs = m


Laste ned ppt "Yuta Michimura Department of Physics, University of Tokyo"

Liknende presentasjoner


Annonser fra Google