Presentasjon lastes. Vennligst vent

Presentasjon lastes. Vennligst vent

1 Hvordan lærer barn matematikk Sandefjord uke 38 Per Vinje-Christensen Høgskolen i Vestfold.

Liknende presentasjoner


Presentasjon om: "1 Hvordan lærer barn matematikk Sandefjord uke 38 Per Vinje-Christensen Høgskolen i Vestfold."— Utskrift av presentasjonen:

1 1 Hvordan lærer barn matematikk Sandefjord uke 38 Per Vinje-Christensen Høgskolen i Vestfold

2 2 Viktige ord og begreper Plasseringsord Rekkefølgeord Antallsord Sammenlikningsord Tidsord Få oversikt over hvem som kan hva

3 3 Hvordan lærer barn matematikk? I dag: fokus på tall og telling Mange barn kan telleramsen når de begynner på skolen men kan de egentlig telle? Hvor langt kan de telle Telleramsen er viktig (sanger og regler)

4 4 TALLFORSTÅELSE Hva innebærer det å ha tallforståelse? Vite hva 8 betyr i ulike sammenhenger Bakovertelling Hvilket tall kommer før 8? Når kan et barn telle Kan si telleramsen riktig Tilordne et tallord til hvert objekt som telles (Solem & Reikerås, 2004)

5 5 TALLFORSTÅELSE Grundig arbeid med tallenes ulike aspekter Kardinaltallsbegrep Ordinaltallsbegrep Tall som identitet Det er ikke alltid klare skillelinjer mellom de ulike aspektene

6 6 Kardinal og ordinal forståelse Kardinal Kunne telle Vite at siste tallord angir antallet Ha antallskonservering Ordinal Forstå prinsipper for å ordne ting i rekkefølge.

7 7 Utvikling av kardinaltallsbegrepet Aktiviteter som involverer parkobling (en-til- en korrespondanse) Øve på telleramsen og telling Forstå at siste tallord angir antallet Antallsord

8 8 Tallbilder Stimulere til å ”se” antallet uten å telle Arbeid med hieroglyfer ?? (gamle egyptiske tall)

9 9 ULIKE TELLEMÅTER Peketelling (ta på, peke, flytte blikket) Høretelling (telle lyder) Flyttetelling (flytte det som telles) Bakovertelling (viktig for subtraksjon) Flere av gangen (f.eks. 2,4,6,8…) Rytmisk telling (1, 2, 3, 4, 5, 6, …)

10 10 Utvikling av ordinal tallforståelse Tidlig: Rutiner, ting skjer i en bestemt rekkefølge Sortere, ordne gjenstander etter ulike egenskaper Rekkefølgeordene er viktige

11 11 TALLFORSTÅELSE Arbeide med tallene på forskjellige måter. ”Tallet er 4””Tallet er 4” (video) Seriell talloppfatning Holistisk talloppfatning

12 12 TALL - MUNTLIG OG SKRIFTLIG = 40 ??? 504 – 6 = 408 ??? Hvorfor er 15 og 51 forskjellige tall??

13 13 Tall - muntlig og skriftlig Muntlig tallspråk kan minne om additive tallsystem Skriftlig tallspråk er et posisjonssystem Kan skape forvirring 1000 – = 9

14 14 ADDISJON OG SUBTRAKSJON Guro har 5 epler og du har 2 epler. Hvor mange flere har Guro? Kan tolkes på flere måter: 5 – 2 = 2 + _ = 5 (er det ene mer riktig enn det andre?)

15 15 Additive strukturer Eksempel: Forene mengder 6 knapper i en lomme og 3 i en annen Fylle på 6 knapper i lomma. Legger oppi 3 til. Sammenlikne 6 knapper i en lomme. 3 flere i den andre Omvendt subtraksjon Tar 3 knapper ut av lomma. Da er det 6 igjen

16 16 STRUKTURER I SUBTRAKSJON Eksempel: 9 – 6 Skille mengder9 kroner i lomma. Mari skal ha 6, og Ola skal ha resten. Ta bort9 kroner i lomma. Tar opp 6.

17 17 Strukturer i subtraksjon Sammenlikne (1)9 kroner i den ene lomma, 6 i den andre Sammenlikne (2)9 kroner i den ene lomma, 6 færre i den andre ManglerJeg har 6 kroner i lomma, men trenger 9

18 18 ARBEIDSMÅTER Monografisk eller syntetisk arbeidsmåte? Monografisk: Metode der elevene arbeider med alle regningsartene samtidig. Syntetisk: Først addisjon, deretter subtraksjon, så multiplikasjon og divisjon Viktig å se sammenhengene mellom regneartene

19 19 Arbeidsmåter Bruk av konkreter konkret  halvkonkret  halvabstrakt  abstrakt ”Ekte” kongler  (bilder)  ||||  4

20 20 STRUKTURER I MULTIPLIKAKSJON Eksempel: 3  5 Gjentatt addisjon Gå tre ganger. Ta med fem brusflasker hver gang Forhold eller rate Kjøpe 3 flasker brus. Pris, 5 kr pr. stk. KombinasjonerTre forskjellige flaske- størrelser, 5 ulike typer brus

21 21 Arbeid med multiplikasjon Gjentatt addisjon ”Det tomme rutenettet””Det tomme rutenettet” (video) Fargelegge på 100-ark100-ark Konstantfunksjon på kalkulator ”Blomst”

22 22 Arbeid med multiplikasjon Før systematisk øving på tabeller: ha gode tallbegreper opp til 100 Ha sikkert grunnlag om begrepet multiplikasjon Fokuser på strategier heller enn tabelltrening

23 23 NOEN STRATEGIER Gruppert læring – ikke lære tabellene i rekkefølge Multiplisere med 0, 1 og 10 (”enkelt”) Dobble (  2, 4, og 8-gangen) En mer (  3, 5 og 9-gangen) Dobbelt (  6-gangen) … o.s.v….

24 24 STRUKTURER I DIVISJON Når kan vi ha behov for slike oppgaver? (lag oppgavetekst) Målingsdivisjon Delingsdivisjon

25 25 Strukturer i divisjon Du betaler 18 kr for 3 epler. Hva koster ett eple? Ett eple koster 3 kr. Hvor mange kan du kjøpe for 18kr? 6 kr 3 kr

26 26 ALGORITMER Hva er algoritmer? Når trenger vi algoritmer? Tall og algebra, 4. trinn (LK06) utvikle og bruke ulike reknemetodar for addisjon og subtraksjon av fleirsifra tal både i hovudet og på papir.

27 27 Hoderegning Skriftlig hoderegning 169 – 98 = hvordan har denne eleven tenkt? ”Den tomme tallinja” (video)Den tomme tallinja Fremmer forståelsen av likhetstegnet

28 28 Likhetstegnet =  + 5 Hvorfor gjør så mange feil på denne? Se hvor lang ”rekke” det er mulig å få = = = = ….

29 29 Nyere forsking Utforsking og eksperimentering Finne egne framgangsmåter Læring skjer i den enkelte Læring skjer i samarbeid med andre Snakke matematikk Klasse-/gruppesamtaler Lærer: Legge til rette for læring

30 30 LK06 Vektlegger variert arbeid: Utforskande Leikande Kreativt problemløysande ferdigheitstrening Grunnleggende ferdigheter Elevene selv finne fremgangsmåter

31 31 OPPSUMMERING Forståelse Finne ut selv Snakke matematikk Variasjon

32 32 Litteratur Breiteig, T. & Venheim, R. (2005) Matematikk for lærere 1. 4 utg. Oslo, Universitetsforl. Høines, M. J. (1997) Begynneropplæringen. Fagdidaktikk for barnetrinnets matematikkundervisning. 2 utg. Landås, Caspar Forlag. Kunnskapsdepartementet & Utdanningsdirektoratet (2006) Læreplanverket for Kunnskapsløftet.Oslo, Utdanningsdirektoratet. Rockstr öm, B. (2000) Skriftlig huvudräkning : metodbok. Stockholm, Bonnier Utbildning. Skott, J., Jess, K. & Hansen, H. C. (2008) Delta: Fagdidaktik. Frederiksberg, Forlaget Samfundslitteratur. (Matematik for lærerstuderende) Solem, I. H. & Reikerås, E. K. L. (2004) Det matematiske barnet. Landås, Caspar forlag.

33 ARK (tilbake) (tilbake)

34 34 ”BLOMST” Trekk et tall. Lag like grupper –Eks. Tallet er 12. Tegne en blomst der 12 står i midten og addisjonene nedenfor er kronbladene = 4  = 3  = 2  = 6  2 (tilbake)

35 35 24 (tilbake)


Laste ned ppt "1 Hvordan lærer barn matematikk Sandefjord uke 38 Per Vinje-Christensen Høgskolen i Vestfold."

Liknende presentasjoner


Annonser fra Google