Presentasjon lastes. Vennligst vent

Presentasjon lastes. Vennligst vent

Matematikkens historie ”Matematikk er mer enn tall og tegn. Matematikk er mystikk, levende mennesker og dødelig drama.” ARNE DVERGSDAL 2001.

Liknende presentasjoner


Presentasjon om: "Matematikkens historie ”Matematikk er mer enn tall og tegn. Matematikk er mystikk, levende mennesker og dødelig drama.” ARNE DVERGSDAL 2001."— Utskrift av presentasjonen:

1 Matematikkens historie ”Matematikk er mer enn tall og tegn. Matematikk er mystikk, levende mennesker og dødelig drama.” ARNE DVERGSDAL 2001

2 Hvorfor matematikkens historie Å forstå noen viktige og særpregede trekk i utviklingen til et av de aller eldste og mest sentrale vitenskapelige fagene.

3 Nilens delta Moderne matematikk kan nok virke fjern og teoretisk. Da blir det interessant å vite at dagens metoder er de samme som ble brukt for 5000 år siden i Mesopotamia og det gamle Egypt når oppsynsmenn skulle beregne åkerlandets utstrekning og kornets verdi.

4 Geometri, som betyr jordmåling, oppsto i deltaet ved Nilens utløp. Det var viktig å holde styr på folks eiendommer i et jordbrukssamfunn der flomvannet hvert år visket ut alle grenser.

5 Aritmetikken, tallregningens kunst, vokste fram i bysamfunn basert på handelsvirksomhet. Etter hvert holdt alle avanserte samfunn seg med ingeniører som kunne bygge byer og festningsverk. Da var det nødvendig å beherske både geometriens og aritmetikkens mysterier i form av matematikk.

6 Hærverk og brann Det aller meste av skriftlig materiale om den gamle matematikken forsvant i hærverk og brann. Men aldri så galt: Mens ilden slukte papyrusruller og skinnbøker, ble leirtavler med kileskrift fra det gamle Babylon herdet til uforgjengelig tegl. Disse mursteinene er nå verdens eldste dokumenter.

7 Omfang I denne leksjonen ser vi på en samling historiske elementer fra matematikkfaget. matematikkundervisningen. Stoffet er delt inn i disse to følgende emner: 1 Tall og tallregning, 2 Algebra og likninger. 1 Tall og tallregning2 Algebra og likninger

8 1 Tall og tallregning EGYPT: Hieroglyfer, 3000 f.Kr.

9 additivt system i base 10 uten mellom-symboler, så mange symboler trengs, f.eks. for tallet 9999 trenger vi 36 symboler lett å legge sammen ikke 0 kun multiplikasjon med 2 (fordobling) og 1/2 (halvering) stambrøker: en munn over egne symboler for 1/2, 1/4, 2/3, 3/4 symbolene varierte med periodene f.Kr.

10 Hieratiske tallsymboler (papyrus; flere symboler å huske); 1800 f.Kr.:

11 kompakt skriveform, f.eks. for tallet 9999 trenger vi 4 symboler Ikke posisjonssystem

12 MESOPOTAMIA Base 60 (seksagesimalt) posisjonssystem: Base 60 fra sumerne ( f.Kr.); posisjon fra babylonerne ( 1800 f-Kr.) kanskje deres viktigste innytelse på matematikken Trengte bare to symboler: et 1-er-symbol og et 10-er-symbol (dermed noe av base 10 i seg):

13

14 Trenger posisjons-konvensjon. Enheter starter fra høyre (som for oss), men merk at vi leser fra venstre: ikke 0 (senere); brukte kontekst Tvetydig notasjon

15 MAYAENE Base 20 (fingre, tær), vigesimalt system, meget avansert for sin tid, 2000 f.Kr.-900 e.Kr.:

16

17 tre symboler: skjell, stein og pinne 0 er med; delvis posisjonssystem et noe uregelmessig system (til/fra astronomi og kalenderberegninger). Eksempel: [8; 14; 3; 1; 12] = 12+1·20+3·18·20+14·18·202+8·18·20 3 =

18 2 Algebra og likninger Ordet algebra I matematikken regner vi mye med bokstaver i stedet for tall. Denne regningen kaller vi algebra. God kjennskap til algebra er nødvendig i alle deler av matematikken. Ordet algebra har vi fått fra det arabiske ordet al-jabr, som betyr å gjenopprette eller sette sammen brukkne bein. Like nøyaktig som en lege setter sammen et brukket bein, bør vi behandle våre algebraiske bokstavuttrykk.

19 Babylonernes løsning av likninger Babylonerne løste problemer som i prinsippet var det samme som å løse annengradslikninger

20 Poetiske likninger I motsetning til våre dagers litt tørre matematiske likninger, var de gamle indernes oppgaver formulert poetisk: "Av en bisverm slo en femtedel seg ned på en cadambablomst og en tredjedel på en silindriblomst. Tre ganger differensen mellom disse to flokkene slo seg ned på en cutajablomst. Resten av svermen - én bie - svirret omkring i luften, fristet av både jasminens og padunusens søte vellukt. Si meg, smukke kvinner, hvor stor svermen var."

21 Hvordan løser du dette? Poetisk oppgave «Ni saftige sitroner og sju velduftende epler koster til sammen 107, og sju sitroner og ni epler koster 101. O, regnemester! Si meg fort hva prisen på én sitron og prisen på ett eple er!»

22 Løsningsforslag 16 sitroner og 16 epler koster til sammen = 208, slik at ett eple og én sitron koster 13. Sju epler og sju sitroner koster da 91, altså koster to sitroner = 16; én koster derfor 8. Da koster ett eple = 5.

23 Diofantos Diofantos var en gresk matematiker som levde ca. 300 år e.Kr. Han utgav mange lærebøker. Blant annet skrev han en bok om å løse likninger. Den dag i dag omtaler matematikere det å finne heltallige løsninger av likninger, som å løse diofantiske likninger.

24 Hvor gammel ble Diofantos? I denne graven hviler Diofantos. Han tilbrakte en seksdel av sitt liv som barn. en tolvdel som ungdom og en syvdel som ungkar. Fem år etter at han giftet seg, fikk han en sønn. Sønnen døde fire år før sin far, og han var da bare halvparten så gammel som faren ble.

25 Forskjellige typer likninger Matematikere har alltid vært opptatt av å finne enkle løsninger av likninger. Allerede babylonerne kunne løse annengradslikninger av typen x² - 2x - 3 = 0 ved hjelp av kvadratsetningene.

26 Omkring år 1500 klarte professor Scipione dal Ferro i Italia å løse enkle tredjegradslikninger. For ikke å hjelpe sine konkurrenter holdt han metoden hemmelig. Han viste den bare til noen få venner og elever.

27 Fjerdegradslikningen ble seinere løst av Lodovico Ferrari ( ). Femtegradslikningen var lenge et problem. Dette fikk en uventet løsning da Niels Henrik Abel beviste at likninger av høyere grad enn 4 ikke kan løses generelt ved rottegn. Denne store matematiske oppdagelsen gjorde Abel da han var bare 21 år gammel.


Laste ned ppt "Matematikkens historie ”Matematikk er mer enn tall og tegn. Matematikk er mystikk, levende mennesker og dødelig drama.” ARNE DVERGSDAL 2001."

Liknende presentasjoner


Annonser fra Google