Presentasjon lastes. Vennligst vent

Presentasjon lastes. Vennligst vent

GEO 1010 Naturgeografi Tormod Klemsdal

Liknende presentasjoner


Presentasjon om: "GEO 1010 Naturgeografi Tormod Klemsdal"— Utskrift av presentasjonen:

1 GEO 1010 Naturgeografi Tormod Klemsdal
Oversikt over min undervisning høstsemesteret 2007 1. Dobbelttime a. Naturmiljø – Landskap – Ressurser b. Grunnlag for klima 2. Dobbelttime A-klima - naturmiljø i A-klima 3. Dobbelttime A-klima / B-klima - naturmiljø 4. Dobbelttime B-klima - naturmiljø i B-klima 5. Dobbelttime C-klima - naturmiljø i C-klima 6. Dobbelttime D-klima - naturmiljø i D-klima 7. Dobbelttime Norske naturmiljø og naturlandskap 8. Dobbelttime E-klima - naturmiljø i E-klima Tormod Klemsdal Institutt for Geofag Avdeling for Naturgeografi Kontortelefon Mobil telefon Grønt hefte i kopisalget, Akademika: GEG 1021 / GEG 1010 Tormod Klemsdal: Naturmiljø i Köppens klimasoner

2 GEO 1010 Naturgeografi Tormod Klemsdal Dobbelttime 15.11.2006
a. Naturmiljø - Landskap - Ressurser b. Grunnlag for klima 1. Luftmasser, geografiske og termodynamiske 2. Stråling; energi - energifordeling 3. Temperatur – varmeekvator 4. Corioli og den generelle, globale luftsirkulasjon (GLS) 5. Vannets faser og faseoverganger 6. Mettet - umettet luft 7. Stabilitet og ustabilitet i luftmassene 8. Walters diagram 9. Köppens klimasystem Tormod Klemsdal Institutt for Geofag Avdeling for Naturgeografi Kontortelefon Mobil telefon Naturmiljø i Köppens klimasoner

3 NATURGEOGRAFISKE TEMA OG PROSESSER
LANDFORM KLIMA VEGETASJON Landformdannende Meteorologiske Biologiske prosesser prosesser prosesser HYDROLOGI Vann / is / skyer JORDSMONN Jordsmonndannende prosesser JORDART Jordartsdannende prosesser BERGGRUNN Bergartsdannende prosesser

4 LANDFORM LANDFORM KLIMA VEGETASJON HYDROLOGI JORDSMONN JORDART
Landformdannende Meteorologiske Biologiske prosesser prosesser prosesser HYDROLOGI Vann / is / skyer JORDSMONN Jordsmonndannende prosesser JORDART Jordartsdannende prosesser BERGGRUNN Bergartsdannende prosesser Abiotisk/edafisk subsystem

5 LANDFORM VANN LANDFORM KLIMA VEGETASJON HYDROLOGI JORDSMONN JORDART
Landformdannende Meteorologiske Biologiske prosesser prosesser prosesser HYDROLOGI Vann / is / skyer JORDSMONN Jordsmonndannende prosesser JORDART Jordartsdannende prosesser BERGGRUNN Bergartsdannende prosesser Klimatisk/hydrologisk subsystem Abiotisk/edafisk subsystem

6 LANDFORM VANN VEGETASJON
LANDFORM KLIMA VEGETASJON Landformdannende Meteorologiske Biologiske prosesser prosesser prosesser HYDROLOGI Vann / is / skyer JORDSMONN Jordsmonndannende prosesser JORDART Jordartsdannende prosesser BERGGRUNN Biotisk subsystem Bergartsdannende prosesser Klimatisk/hydrologisk subsystem Abiotisk/edafisk subsystem

7 NATURMILJØ - NATURFORHOLD - NATURLANDSKAP
LANDFORM VANN VEGETASJON LANDFORM KLIMA VEGETASJON Landformdannende Meteorologiske Biologiske prosesser prosesser prosesser HYDROLOGI Vann / is / skyer JORDSMONN Jordsmonndannende prosesser JORDART Jordartsdannende prosesser BERGGRUNN Biotisk subsystem Bergartsdannende prosesser Klimatisk/hydrologisk subsystem Abiotisk/edafisk subsystem

8 NATURMILJØ – NATURLANDSKAP
VANN LANDFORM VEGETASJON LANDFORM VEGETASJON Landformdannende Biologiske prosesser prosesser VANN Vann / is / skyer KLIMA JORDSMONN Meteorologiske Jordsmonndannende prosesser prosesser BERGGRUNN JORDART Berggrunndannende Jordartsdannende prosesser prosesser MENNESKENE Enkeltindivid Organisasjoner

9 NATURMILJØ – NATURLANDSKAP
VANN LANDFORM VEGETASJON LANDFORM VEGETASJON Landformdannende Biologiske prosesser prosesser VANN Vann / is / skyer KLIMA JORDSMONN Meteorologiske Jordsmonndannende prosesser prosesser BERGGRUNN JORDART Berggrunndannende Jordartsdannende prosesser prosesser SAMFUNNET Kommune Fylke Stat MENNESKENE Enkeltindivid Organisasjoner

10 NATURMILJØ – NATURLANDSKAP
VANN MENNESKEVERK LANDFORM VEGETASJON AREALBRUK LANDFORM VEGETASJON Landformdannende Biologiske prosesser prosesser VANN Vann / is / skyer KLIMA JORDSMONN Meteorologiske Jordsmonndannende prosesser prosesser BERGGRUNN JORDART Berggrunndannende Jordartsdannende prosesser prosesser SAMFUNNET Kommune Fylke Stat MENNESKENE Enkeltindivid Organisasjoner

11 JORDBRUK BEBYGGELSE Gårdbebyggelse; tunet Åker Eng
Beite i hagemark, utmark Styvende trær Rydningsrøyser Steingjerder Gjerder - hekker (korridor med restvegetasjon) Gårdsvei - jordbruksveier Vanningsanlegg Halmballer (”traktoregg”/plast), halmlagring MENNESKEVERK AREALBRUK SAMFUNNET Kommune Fylke Stat SKOGBRUK JORDBRUK BEBYGGELSE KOMMUNIKASJON ANNET Tørre elveleier Dam og magasin Materialtipper Kraftlinjer BEBYGGELSE Fritidsbebyggelse Spredt gårdsbebyggelse Tettstedsbebyggelse Villabebyggelse Bybebyggelse Industribebyggelse MENNESKENE Enkeltindivid Organisasjoner

12 NATURMILJØ – NATURLANDSKAP KULTURLANDSKAP
VANN MENNESKEVERK LANDFORM VEGETASJON AREALBRUK LANDFORM VEGETASJON Landformdannende Biologiske prosesser prosesser VANN Vann / is / skyer KLIMA JORDSMONN Meteorologiske Jordsmonndannende prosesser prosesser BERGGRUNN JORDART Berggrunndannende Jordartsdannende prosesser prosesser SAMFUNNET Kommune Fylke Stat SKOGBRUK JORDBRUK BEBYGGELSE KOMMUNIKASJON ANNET Tørre elveleier Dam og magasin Materialtipper Kraftlinjer MENNESKENE Enkeltindivid Organisasjoner

13 LANDSKAP NATURMILJØ – NATURLANDSKAP KULTURLANDSKAP VANN MENNESKEVERK
LANDFORM VEGETASJON AREALBRUK LANDFORM VEGETASJON Landformdannende Biologiske prosesser prosesser VANN Vann / is / skyer KLIMA JORDSMONN Meteorologiske Jordsmonndannende prosesser prosesser BERGGRUNN JORDART Berggrunndannende Jordartsdannende prosesser prosesser SAMFUNNET Kommune Fylke Stat SKOGBRUK JORDBRUK BEBYGGELSE KOMMUNIKASJON ANNET Tørre elveleier Dam og magasin Materialtipper Kraftlinjer MENNESKENE Enkeltindivid Organisasjoner

14

15

16 WELL … THAT´S THE EARTHS PROBLEM´ OR OUR PROBLEM OR
GEOGRPHY´S/PHYSICAL GEOGRAPHY´S/RESOUCE GEOGRAPHY´S PROBLEM ?

17 Da John Eli Miller døde i Middelfield, Ohio, tidlig på 1920-tallet var han den som hadde størst familie i USA. Han hadde da 417 etterkommere. Fra: Bodkin, D.B. & Keller, E.A Environmental Science. Earth as a living planet. 2 9 39 92 Forholdstall mellom Generasjonene Miller Klemsdal 9 9, ,3 5, ,3 Min oldefar giftet seg til gården Klemsdal i Varteig utenfor Sarpsborg i Mine oldeforeldre fikk 9 barn, og min farfar var en av dem. Disse 9 fikk igjen 39 barn, som igjen fikk 92 barn, og jeg er en av dem.

18 1 milliard mennesker 2 milliarder mennesker år 3 milliarder mennesker år 4 milliarder mennesker år 5 milliarder mennesker år 6 milliarder mennesker år 7 milliarder mennesker år

19

20

21 Menneskenes omgivelser
Human environment Menneskenes omgivelser eller menneskenes Livsmiljø Landskap

22 LANDSKAP Menneskets livsmiljø NATURLANDSKAP Naturmiljø KULTURLANDSKAP
Menneskeformet miljø

23 (behovstilfredsstillelse)
MENNESKET og dets behov (behovstilfredsstillelse) LANDSKAP Menneskets livsmiljø NATURLANDSKAP Naturmiljø KULTURLANDSKAP Menneskeformet miljø

24 (behovstilfredsstillelse)
MENNESKET og dets behov (behovstilfredsstillelse) Verdier i et landskap LANDSKAP Menneskets livsmiljø NATURLANDSKAP Naturmiljø KULTURLANDSKAP Menneskeformet miljø

25 (behovstilfredsstillelse)
Ressursutnyttelse MENNESKET og dets behov (behovstilfredsstillelse) Verdier i et landskap LANDSKAP Menneskets livsmiljø NATURLANDSKAP Naturmiljø KULTURLANDSKAP Menneskeformet miljø

26 (behovstilfredsstillelse)
Aktører og konflikter Ressursutnyttelse MENNESKET og dets behov (behovstilfredsstillelse) Verdier i et landskap LANDSKAP Menneskets livsmiljø NATURLANDSKAP Naturmiljø KULTURLANDSKAP Menneskeformet miljø

27 (behovstilfredsstillelse)
Degradasjon av ressurser og landskap Aktører og konflikter Ressursutnyttelse MENNESKET og dets behov (behovstilfredsstillelse) Verdier i et landskap LANDSKAP Menneskets livsmiljø NATURLANDSKAP Naturmiljø KULTURLANDSKAP Menneskeformet miljø

28 (behovstilfredsstillelse)
Degradasjon av ressurser og landskap Aktører og konflikter Ressursutnyttelse MENNESKET og dets behov (behovstilfredsstillelse) Forvaltning av landskapet Verdier i et landskap LANDSKAP Menneskets livsmiljø NATURLANDSKAP Naturmiljø KULTURLANDSKAP Menneskeformet miljø

29 (behovstilfredsstillelse)
Degradasjon av ressurser og landskap Aktører og konflikter Ressursutnyttelse MENNESKET og dets behov (behovstilfredsstillelse) Forvaltning av landskapet Verdier i et landskap LANDSKAP Menneskets livsmiljø NATURLANDSKAP Naturmiljø KULTURLANDSKAP Menneskeformet miljø

30 Grunnlag for klima Grunnlag for klima
1. Luftmasser, geografiske og termodynamiske luftmasser Grunnlag for klima

31 Intertropiske konvergenssone
Luftmasser Geografiske luftmasser Dannes over lengre tid over et underlag av enten hav, maritime luftmasser (m) eller land, kontinentale luftmasser (c), enten i polare strøk (P), i tropiske strøk (T) eller i ekvatoriale strøk (E). ITC : Intertropiske konvergenssone

32 Intertropiske konvergenssone
Luftmasser Geografiske luftmasser dannes over lengre tid over et underlag av enten hav, maritime luftmasser (m) eller land, kontinentale luftmasser (c), enten i polare strøk (P), i tropiske strøk (T) eller i ekvatoriale strøk (E). Termodynamiske luftmasser Er luftmasser som av en eller annen grunn flyttes ut fra sitt dannelsesområde; Luft som kommer inn over et varmere underlag, varmes opp og blir ustabil og vil stige. Luft som kommer inn over kaldere underlag kjøles av og vil bli stabil og bli liggende. ITC : Intertropiske konvergenssone

33 Grunnlag for klima 1. Luftmasser, geografiske og termodynamiske luftmasser 2. Stråling; energi - energifordeling

34 innstråling fra sola til jorda
Strålings-intensitet 0,1 0,2 0,3 0,4 0,7 1 2 3 4 7 10 20 100 50 70 30 5 0,5 0,05 0,02 0,01 T. Klemsdal 2003 Synlig lys Ultrafiolett stråling Kortbølget infrarød Termisk langbølget innstråling fra sola til jorda Langbølget utstråling fra jorda til verdensrommet Bølgelengde, mikrometer (γm)

35

36

37 Innstråling, Langleys pr dag
10 20 30 40 50 60 70 80 90 600 500 400 300 200 100 Breddegrad (o N) T. Klemsdal 2003 36 0N Overskudd Underskudd Kortbølget innstråling fra sola som jorden absorberer Langbølget utstråling fra jorda til verdensrommet Innstråling, Langleys pr dag

38 60 grader nord / sør Kortbølget innstråling fra solen Ekvator
1 areal- enhet 2 enheter 60 grader nord / sør Nordpolen Jord- aksen Kortbølget innstråling fra solen

39 Sol i senit ? 60 grader nord / sør Kortbølget innstråling fra solen
Ekvator 1 areal- enhet 2 enheter 60 grader nord / sør Nordpolen Jord- aksen Kortbølget innstråling fra solen Sol i senit ?

40 Årstidsvariasjonene Sol i senit over ekvator Sol i senit over nordlig vendekretssirkel Sol i senit over sørlig vendekretssirkel Sol i senit over ekvator Jordaksen har en vinkel på 66½o med planet som jorden beveger seg i rundt solen

41 LANDFORMER og JORDARTER
Meteorologiske prosesser Varme vs kulde - luftmasser - vindsystem - nedbør vs tørke Temperatur fra ekvatoriale strøk til polare strøk Nedbør fra tropiske strøk til ørkenstrøk Meteorologiske prosessene skaper været og Været i et langtidsperspektiv er KLIMA SOLEN JORDEN Geomorfologiske prosesser (Landfordannende og jordartsdannende prosesser) Mekanisk og kjemisk forvitring: Avhengig av temperatur og varme Rennende vanns arbeid: Erosjon – transport – akkumulasjon Breers arbeid Jordskjelv - vulkanisme Vindens arbeid Fjellkjededannelse Bølgenes arbeid Disse prosessene gir grunnlag for LANDFORMER og JORDARTER Styrer de ytre kreftene Styrer de indre kreftene Biologiske prosesser Lys - varme - nedbør gir grunnlaget for fysiske, kjemiske og biologiske prosesser som former og utvikler FLORA FAUNA og JORDSMONN Vegetasjon spenner fra trær (skog) via busker, vier, lyng, urter til gress

42 Grunnlag for klima 1. Luftmasser, geografiske og termodynamiske luftmasser 2. Stråling; energi - energifordeling 3. Temperatur – varmeekvator

43 Temperatur januar Vinter på nordlige halvkule
Sommer på sørlige halvkule

44 Temperatur juli Sommer på nordlige halvkule
Vinter på sørlige halvkule

45 Temperaturforskjell mellom kaldest og varmest månedsmideltemperatur

46 Grunnlag for klima 1. Luftmasser, geografiske og termodynamiske luftmasser 2. Stråling; energi - energifordeling 3. Temperatur – varmeekvator 4. Corioli og den generelle, globale luftsirkulasjon (GLS)

47 r C B B* r = R / 2 R 60 A A* Ekvators lengde er 2 π R = 40 000 km
60 breddegrad er 2 π r = km Corioli effekten som skyldes jorda rotasjon fører til: Avbøyning av all bevegelse på nordlige halvkule til høyre Avbøyning av all bevegelse på sørlige havlvkule til venstre A : Punktet A ved tiden 0 A* Punktet A ved tiden t B: Punktet B ved tiden 0 B*: Punktet B ved tiden t

48 Corioli effekten

49 Starten på den generelle eller den globale luftsirkulasjon
Lufttrykkvariasjoner kommer av enten oppvarming eller avkjøling. Lufttrykkvariasjoner fører til vind. Vind er luft som strømmer fra høytrykk til lavtrykk. Vind i de bakkenære luftlag Geostrofisk vind Vind i de øvre luftlag Trykk- Gradient vind Lav- trykk Høy- trykk Friksjon Lav- trykk Høy- trykk Trykk- gradient vind Corioli effekten Corioli effekten Vind nær bakken Geostrofisk vind Isobarer, linjer gjennom likt lufttrykk Vind; luftstrøm fra høytrykk til lavtrykk

50 H L a) Nord Sør Ekvator b) Nordøstpassaten Sørøstpassaten
Vind inn mot ekvator fra nord og sør Nordøstpassaten Sørøstpassaten

51 H L a) Nord Sør Ekvator b) Nordøstpassaten Sørøstpassaten
Vind inn mot ekvator fra nord og sør Nordøstpassaten Sørøstpassaten

52 H L a) Nord Sør Ekvator b) Nordøstpassaten Sørøstpassaten
Vind inn mot ekvator fra nord og sør Nordøstpassaten Sørøstpassaten C: Corioli effekten: All bevegelse på nordlig halvkule dreiers av mot høyre All bevegelse på sørlig halvkule dreies av til venstre

53 Starten på den generelle eller den globale luftsirkulasjon
Geostrofisk vind Vind i de øvre luftlag Vind i de bakkenære luftlag Trykk- Gradient vind Lav- trykk Høy- trykk Friksjon Lav- trykk Høy- trykk Trykk- gradient vind Corioli effekten Lh Corioli effekten Vind nær bakken Geostrofisk vind Ekvator Hb 30 o N 30 oS Ferrels celle Hadleys celle Hh Lh cell Lh Lb

54 DEN GLOBALE LUFTSIRKULASJON Polarfronten Polarfrontsonen
Hadley celle Ferrel celle Polarfronten Subtropisk høytrykksbelte H Vestavindsbeltet Polare østavinder Nordøstpassaten Sørøstpassaten Den ekvatoriale lavtrykksonen (stillebeltet) med den intertropiske konvergenssonen (ITKS) Polarfront 0o 30o 60o T. Klemsdal 2003 Polarfrontsonen DEN GLOBALE LUFTSIRKULASJON ITKS Tropopausen

55

56 Grunnlag for klima 1. Luftmasser, geografiske og termodynamiske luftmasser 2. Stråling; energi - energifordeling 3. Temperatur – varmeekvator 4. Corioli og den generelle, globale luftsirkulasjon (GLS) 5. Vannets faser og faseoverganger

57 energi / varme frigjøres
H O + - Hydrogen Oksygen Vann Veske Is Fast stoff Smelting 80 calorier pr gram energi / varme bindes Frysing 80 calorier pr gram energi / varme frigjøres

58 Smelting Frysing Frysing
H O + - Hydrogen Gass Vanndamp Oksygen Fordamping 590 calorier pr gram energi / varme bindes Latent varme Kondensasjon 590 calorier pr gram energi / varme frigjøres Vann Veske Is Fast stoff Smelting 80 calorier pr gram energi / varme bindes Frysing 80 calorier pr gram energi / varme frigjøres Frysing 80 cal pr gram Energi / varme frigjøres

59 Smelting Frysing Frysing
H O + - Hydrogen Gass Vanndamp Oksygen Sublimasjon 670 calorier pr gram energi / varme bindes eller frigjøres Fordamping 590 calorier pr gram energi / varme bindes Latent varme Kondensasjon 590 calorier pr gram energi / varme frigjøres Vann Veske Is Fast stoff Smelting 80 calorier pr gram energi / varme bindes Frysing 80 calorier pr gram energi / varme frigjøres Frysing 80 cal pr gram Energi / varme frigjøres

60 Grunnlag for klima 1. Luftmasser, geografiske og termodynamiske luftmasser 2. Stråling; energi - energifordeling 3. Temperatur – varmeekvator 4. Corioli og den generelle, globale luftsirkulasjon (GLS) 5. Vannets faser og faseoverganger 6. Mettet - umettet luft

61 Antall gram vann (Gr) pr kg luft med 100 % luftfuktighet (mettet luft) / ved temperatur (oC)
1,0 1,2 1,5 3 4 6 8 12 16 22 28 36 47,5 T oC -20 -15 -10 -5 5 10 15 20 25 30 35 40

62 Antall gram vann (Gr) pr kg luft med 100 % luftfuktighet (mettet luft) / ved temperatur (oC)
1,0 1,2 1,5 3 4 6 8 12 16 22 28 36 47,5 T oC -20 -15 -10 -5 5 10 15 20 25 30 35 40 40 30 20 10 -10 Temperatur i oC 50 Antall gram vann pr kg luft med 100 % luftfuktighet (mettet luft)

63 * * 40 30 20 10 -10 Temperatur i oC 50 Antall gram vann pr kg luft
-10 Temperatur i oC 50 Antall gram vann pr kg luft med 100 % luftfuktighet (mettet luft) T. Klemsdal 2003 Antall gram vann (Gr) pr kg luft med 100 % luftfuktighet (mettet luft) / ved temperatur (oC) Gr 1,0 1,2 1,5 3 4 6 8 12 16 22 28 36 47,5 T oC -20 -15 -10 -5 5 10 15 20 25 30 35 40 40 30 20 10 -10 Temperatur i oC 50 Antall gram vann pr kg luft med 100 % luftfuktighet (mettet luft) 20/16 * * 20/8

64 Grunnlag for klima 1. Luftmasser, geografiske og termodynamiske luftmasser 2. Stråling; energi - energifordeling 3. Temperatur – varmeekvator 4. Corioli og den generelle, globale luftsirkulasjon (GLS) 5. Vannets faser og faseoverganger 6. Mettet - umettet luft 7. Stabilitet og ustabilitet i luftmassene

65 Stabilitet - ustabilitet i atmosfæren b a
100 meter over bakken Bakken o Temperatur i C , , ,0 o a: Den tørradiabatiske gradient; 1,0 C / 100 m, umettet luft b: Den fuktigadiabatiske gradient; 0,5 C / 100 m, mettet luft o

66 Stabilitet - ustabilitet i atmosfæren b a
1 100 meter over bakken Absolutt ustabil luft Lufttemperaturen ligger til venstre for linje a; den tørradiabatiske gradienten Bakken o Temperatur i C , , ,0 1: er et tenkt tilfelle på lufttemperaturens variasjon med høyden over bakken o a: Den tørradiabatiske gradient; 1,0 C / 100 m, umettet luft b: Den fuktigadiabatiske gradient; 0,5 C / 100 m, mettet luft o

67 Stabilitet - ustabilitet i atmosfæren b a 2
1 100 meter over bakken Absolutt ustabil luft Lufttemperaturen ligger til venstre for linje a; den tørradiabatiske gradienten Absolutt stabil luft Bakken o Temperatur i C , , ,0 1og 2: er 2 tenkte tilfeller på lufttemperaturens variasjon med høyden over bakken o a: Den tørradiabatiske gradient; 1,0 C / 100 m, umettet luft b: Den fuktigadiabatiske gradient; 0,5 C / 100 m, mettet luft o

68 Stabilitet - ustabilitet i atmosfæren b a 2
Betinget stabil luft 1 3 100 meter over bakken Absolutt ustabil luft Lufttemperaturen ligger til venstre for linje a; den tørradiabatiske gradienten Absolutt stabil luft Bakken o Temperatur i C , , ,0 1, 2 og 3: er 3 tenkte tilfeller på lufttemperaturens variasjon med høyden over bakken o a: Den tørradiabatiske gradient; 1,0 C / 100 m, umettet luft b: Den fuktigadiabatiske gradient; 0,5 C / 100 m, mettet luft o

69 Grunnlag for klima 1. Luftmasser, geografiske og termodynamiske luftmasser 2. Stråling; energi - energifordeling 3. Temperatur – varmeekvator 4. Corioli og den generelle, globale luftsirkulasjon (GLS) 5. Vannets faser og faseoverganger 6. Mettet - umettet luft 7. Stabilitet og ustabilitet i luftmassene 8. Walters diagram

70 WALTERS KLIMADIAGRAM Midlere årstemperatur (T)
10 20 30 40 50 100 80 60 Nordlige halvkule J F M A M J J A S O N D Sørlige halvkule J A S O N D J F M A M J Osmaniye (120 m) oC (8) mm Midlere årstemperatur (T) Midlere total årsnedbør (P mm) Fuktig periode, regntid (humid) Tørke periode Arid måneds- nedbør (P i mm) Stasjonsnavn, med høyde over havet i m og antall observa- sjonsår i ( ) temperatur (t oC) T oC Med midlere måneds-nedbør større enn 100 mm, reduseres skalaen til 1/10 (svart) WALTERS KLIMADIAGRAM

71 Grunnlag for klima 1. Luftmasser, geografiske og termodynamiske luftmasser 2. Stråling; energi - energifordeling 3. Temperatur – varmeekvator 4. Corioli og den generelle, globale luftsirkulasjon (GLS) 5. Vannets faser og faseoverganger 6. Mettet - umettet luft 7. Stabilitet og ustabilitet i luftmassene 8. Walters diagram 9. Köppens klimasystem

72 Köppens klimasystem Hovedsymbol, stor bokstav A Ekvatorialt klima to > 18 oC B Tørt klima (Arid klima) avhengig av forholdet temperatur / nedbør C Temperert klima varmeste måned to > 10 oC kaldeste måned to < -3 oC D Borealt klima varmeste måned to > 10 oC E Polart klima varmeste måned to < 10 oC

73 Köppens klimasystem Hovedsymbol, stor bokstav A Ekvatorialt klima to > 18 oC B Tørt klima (Arid klima) avhengig av forholdet temperatur / nedbør C Temperert klima varmeste måned to > 10 oC kaldeste måned to < -3 oC D Borealt klima varmeste måned to > 10 oC E Polart klima varmeste måned to < 10 oC Bisymbol, stor bokstav S Semiarid, steppeklima W Fullarid, ørkenklima T Tundraklima varmeste måned 0 oC < to < 10 oC F Isklima varmeste måned to < 0 oC

74 Köppens klimasystem Hovedsymbol, stor bokstav A Ekvatorialt klima to > 18 oC B Tørt klima (Arid klima) avhengig av forholdet temperatur / nedbør C Temperert klima varmeste måned to > 10 oC kaldeste måned to < -3 oC D Borealt klima varmeste måned to > 10 oC E Polart klima varmeste måned to < 10 oC Bisymbol, stor bokstav S Semiarid, steppeklima W Fullarid, ørkenklima T Tundraklima varmeste måned 0 oC < to < 10 oC F Isklima varmeste måned to < 0 oC Bisymbol, liten bokstav f fuktig (humid) nedbør i alle årets måneder w vintertørt s sommertørt m monsuntype k kald h varm

75 Köppens klimasystem Hovedsymbol, stor bokstav A Ekvatorialt klima to > 18 oC B Tørt klima (Arid klima) avhengig av forholdet temperatur / nedbør C Temperert klima varmeste måned to > 10 oC kaldeste måned to < -3 oC D Borealt klima varmeste måned to > 10 oC E Polart klima varmeste måned to < 10 oC Bisymbol, stor bokstav S Semiarid, steppeklima W Fullarid, ørkenklima T Tundraklima varmeste måned 0 oC < to < 10 oC F Isklima varmeste måned to < 0 oC Bisymbol, liten bokstav f fuktig (humid) nedbør i alle årets måneder w vintertørt s sommertørt m monsuntype k kald h varm a meget varm sommer, midlere månedstemperatur > 22 oC b varm sommer, ingen måned over 22 oC, 4 måneder over 10 oC c kjølig, kort sommer, ingen måned over 22 oC, 1-4 måneder over 10 oC d meget kald vinter kaldeste måned under -38 oC

76


Laste ned ppt "GEO 1010 Naturgeografi Tormod Klemsdal"

Liknende presentasjoner


Annonser fra Google