Presentasjon lastes. Vennligst vent

Presentasjon lastes. Vennligst vent

Kapittel 14: Køteori Åpenbare anvendelser i praksis

Liknende presentasjoner


Presentasjon om: "Kapittel 14: Køteori Åpenbare anvendelser i praksis"— Utskrift av presentasjonen:

1 Kapittel 14: Køteori Åpenbare anvendelser i praksis
Dansk statistiker A. K. Erlang ute med tidlige anvendelser for telefonsystemer Kostnader i køproblemer: Ventekostnader Betjeningskostnader Må avveies mot hverandre

2 Ventekostnader og betjening
Servicenivå Forventet totalkostnad Betjeningskostnad Ventekostnad * Optimalt service nivå

3 Eksempel 5 fartøyer kommer for lossing hver 12. time. Vente-kostnader kr pr. time. Lønn: kr pr. skift

4 Egenskaper ved et køsystem
Ankomstprosess Sannsynlighetsfordeling Poisson En annen fordeling Størrelse på kundegrunnlag Begrenset Ubegrenset Ankomster Tilfeldig Faste

5 Ankomstprosess Vanligvis antas det at ankomstene er Poisson fordelt:

6 Egenskaper ved køsystemet
Vi kan bruke Appendix for å finne e– Hvis  = 2, finner vi verdier for X = 0, 1, og 2

7 To eksempler på Poisson fordeling
Sannsynlighet = P(X) = e - x X! Sannsynlighet Sannsynlighet  = 2 fordeling  = 4 fordeling

8 Egenskaper ved køen Atferd i køen Egenskaper ved køen
Stiller seg i køen, og venter på betjening balking; vil ikke stille seg i kø renege; forlater køen Egenskaper ved køen Er køen av begrenset eller ubegrenset størrelse Service prioritet FIFO Annen (lov å snike – legevakt)

9 Egenskaper ved køen Betjeningsfasiliteter Antall faser i køen
Antall betjeningsstasjoner, en eller flere Antall faser i køen Enkel (forlater køen etter å ha blitt betjent) Multippel – stiller seg i ny kø Betjeningstiden Negativ eksponentialfordeling Annen (for eksempel fast)

10 Egenskaper ved køsystem
Single-Channel, Single-Phase System Arrivals Departures after Service Queue Service Facility Single-Channel, Multiphase System Arrivals Departures after Service Queue Type 1 Service Facility Type 2 Service Facility

11 Egenskaper ved køsystem
Multichannel, Single-Phase System Arrivals Queue Service Facility 1 Departures after Service Facility 2 Service Service Facility 3

12 Egenskaper ved køsystem
Multichannel, Multiphase System Arrivals Queue Departures after Service Type 2 Service Facility 1 Type 2 Service Facility 2 Type 1 Service Facility 2 Type 1 Service Facility 1

13 Eksempel på betjeningstid
Sannsynlighet (betjeningen tar lenger tid enn X minutter) = e- x for X 0 = Gjennomsnittlig betjeningskapasitet pr. minutt (for Intervall på 1 minutt) Sannsynlighet Gjennomsnittlig betjeningstid 20 minutter Gjennomsnittlig betjeningstid 1 time

14 Kendall notasjonen Vi bruker ofte 2 symboler for å beskrive et køsystem: Eksempel M/M/1 – Poisson fordelt ankomst og betjening (M) og en betjeningsstasjon Arrival Service Time Number of Service Distribution Distribution Channels Open

15 Egenskaper ved enkel modell
1. Ankomster betjenes etter FIFO-prinsippet 2. Ankomstene er uavhengige 3. Ankomstprosessen er Poisson fordelt, og kundegrunnlaget stort 4. Betjeningstiden varierer, men gjennomsnittstiden er kjent 5. Betjeningstiden er negativt eksponentialfordelt 6. Betjeningskapasiteten er høyere enn ankomstraten

16 Ytelsesmål i en kø Total tid den enkelte bruker i køen
Gjennomsnittlig lengde på køen Gjennomsnittlig tid i systemet (kø og betjening) Gjennomsnittlig antall kunder i systemet Sannsynligheten for at det er ledig Utnyttelsesgraden av køen Sannsynligheten for et gitt antall mennesker i kø

17 Ytelsesmål i en kø Følgende symboler brukes
 = gjennomsnittlig ankomstrate pr. tidsenhet (pr. time, for eksempel)  = gjennomsnittlig antall som betjenes pr. tidsenhet > , ellers vokser køen permanent

18 Ytelsesmål i kø Antall i systemet: L = /( - )
Tid i systemet: W = 1/( - ) Antall i kø: Lq = 2/(u (u - )) Tid i kø: Wq = /(u (u - )) Utnyttelsesgrad:  = /u P(ledig): P0 = 1 - /u Pn>k: Pn>k = (/u)k+1

19 Eksempel – Arnold Muffler
Kunder ankommer et bilverksted med en frekvens på 2 i timen ( = 2) Kapasiteten er 3 biler i timen ( = 3) Ankomstraten er Poissonfordelt og betjeningstiden eksponentialfordelt Hvordan oppfører dette køsystemet seg?

20 Eksempel – Arnold Muffler
L => ? Gjennomsnitt antall biler i systemet W => ? Tid i systemet Lq => ? Antall biler i kø Wq => ? Tid i kø Pw => ? Andel av tid man er opptatt Po => ? Sannsynlighet for at det er biler i systemet

21 Eksempel – Arnold Muffler
L = 2/(3-2) => biler i systemet W = 1/(3-2) => time i systemet Lq = 22/[3(3-2)] => 1.33 biler i kø Wq = 2/[3(3-2)] => timer i kø Pw = 2/3 => % av tiden P(0) = 1 – (2/3) => 33 % sannsynlighet for at det er 0 biler i systemet

22 Eksempel: Arnolds Muffler

23 Eksempel: Arnolds Muffler

24 Kø med kostnader Totalkostnader = ventekostnader + betjeningskostnader
Betjeningskostnad = antall betjeningsstasjoner • kostnad pr. stasjon Betjeningskostnad = m • Cs

25 Kø med kostnader Ventekostnad – påløper disse bare mens man står i kø eller også når man blir betjent (tid i systemet)? Tid i systemet gir total ventetid for alle i systemet • ventekostnader = antall ankomster • ventetid • Cw =  • W • Cw Hvis ventekostnader bare oppstår når man står i kø, erstattes W med Wq

26 Eksempel: Arnolds Muffler
Økonomisk analyse Ventekostnader kr 10 pr. time venting 2/3 time ventetid pr kunde 16 biler ankommer pr. dag Ventekostnad = 10 • 16 • 2/3 = 106,67 Betjeningskostnad 7 pr. time eller 56 pr. d. Totalkostnad = 106, = 162,67

27 Eksempel: Arnolds Muffler
Er det lønnsomt å ansette en annen montør, som kan behandle 4 kunder pr. time, mens lønnen øker til 9?

28 Multikanal, Poisson ankomst, eksponesiell betjeningstid (M/M/m)
Ligninger for modell med flere betjeningsstasjoner Symboler: m = antall kanaler åpne  = gjennomsnittlig ankomstrate  = betjeningsrate i hver stasjon Sannsynlighet for 0 kunder i systemet

29 Multikanal, Poisson ankomst, eksponesiell betjeningstid (M/M/m)
Gjennomsnittlig antall kunder i systemet Gjennomsnittlig tid i systemet (kø + betjening)

30 Multikanal, Poisson ankomst, eksponesiell betjeningstid (M/M/m)
Gjennomsnittlig antall i kø: Gjennomsnittlig tid i kø Utnyttelsesgrad

31  Sannsynlighet for 0 biler i systemet
Arnold’s Muffler Shop Arnold vurderer å åpne et verksted til Det ansettes en person til som er like effektiv som den andre Ankomstraten påvirkes ikke  Sannsynlighet for 0 biler i systemet

32 Arnold’s Muffler Shop Antall biler i systemet Tid i systemet

33 Arnold’s Muffler Shop Antall i kø Tid i kø

34 Arnold’s Muffler Shop LEVEL OF SERVICE OPERATING CHARACTERISTIC
ONE MECHANIC  = 3 TWO MECHANICS  = 3 FOR BOTH ONE FAST MECHANIC  = 4 Probability that the system is empty (P0) 0.33 0.50 Average number of cars in the system (L) 2 cars 0.75 cars 1 car Average time spent in the system (W) 60 minutes 22.5 minutes 30 minutes Average number of cars in the queue (Lq) 1.33 cars 0.083 car 0.50 car Average time spent in the queue (Wq) 40 minutes 2.5 minutes 15 minutes

35 Arnold’s Muffler Shop Et verksted til øker betjeningskostnad men reduserer ventekostnadene Total daglig ventekostnad = (8 timer pr dag)WqCw = (8)(2)(0.0415)($10) = $6.64 Total daglig begjeningskostnad = (8 timer pr dag)mCs = (8)(2)($7) = $112 Totalkostnadene blir = $ $112 = $118.64 Beste løsning er den mest effektive montøren

36 Åpner et verksted til (M/M/2)


Laste ned ppt "Kapittel 14: Køteori Åpenbare anvendelser i praksis"

Liknende presentasjoner


Annonser fra Google