Presentasjon lastes. Vennligst vent

Presentasjon lastes. Vennligst vent

BA i IT-SLP: Bedømmings- og beslutningsprosesser Geir Kirkebøen Orienteringsmøte for førsteårsstudenter i IT-SLP, 6. april 2005.

Liknende presentasjoner


Presentasjon om: "BA i IT-SLP: Bedømmings- og beslutningsprosesser Geir Kirkebøen Orienteringsmøte for førsteårsstudenter i IT-SLP, 6. april 2005."— Utskrift av presentasjonen:

1 BA i IT-SLP: Bedømmings- og beslutningsprosesser Geir Kirkebøen Orienteringsmøte for førsteårsstudenter i IT-SLP, 6. april 2005

2 1.Hvordan IT bidro til å forandre psykologifaget 2.Ekspertise, AI og BB-psykologi: Et paradoks 3.Hva er bedømmings- og beslutningspsykologi? 4.Hva er beslutningsteknologi? 5.BA i IT-SLP: Bedømmings- og beslutningsprosesser Oversikt:

3 Hvordan IT bidro til å forandre psykologifaget: 1.Mer komplisert (IT-)teknologi krevde en mer kompleks, mentalistisk psykologi 2.IT ga terminologi og forståelsesformer til denne nye mentalistiske psykologien 3.IT ga den nye mentalistiske (kognitive) psykologien vitenskapelig legitimitet

4 Mentale størrelser: Sansepåvirkning Atferd/ Handling Problemer med mentalistisk psykologi før 1950: ”Persepsjonsproblemet”: ”Kontrollproblemet ”: Hvordan oppstår mentale størrelser fra sansning? Hvordan produserer/ kontrollerer mentale størrelser atferd/handling? Kunnskap, idéer, holdninger, følelser, ’superego’, … mm Reflekser ol.

5 Mentale størrelser SansepåvirkningAtferd/ Handling Atferdspsykologiens løsning: Persepsjons- problemet Kontroll- problemet Respons (atferd) Stimuli (Sansepåvirkning) "everything can be done in terms of stimuli and response” (John Watson, 1913)

6 Atferdpsykologiens klokkertro på læring: "I'll guarantee to take any (...) one [baby] at random and train him to be any type of specialist" (John Watson) Psykologenes oppgave under krigen, bl.a.: 1.Krigen, : Mer komplisert (IT-)teknologi krevde en mer kompleks psykologi Lær opp personell til å håndtere den nye mer komplekse krigsteknologien (menneske-maskin systemer etc.)! Presser fram en ny type ”mentalistiske” spørsmål : Hva er menneskets ”indre” (mentale) begrensninger?

7 Eksempel 1: Miller G. A. (1956) The magical number seven plus or minus two: some limits in our capacity for processing information. Psycological Review, 63, s ‘Umiddelbare hukommelse’ = ‘Informasjonskanal’ Begrensningen reiser spørsmålene: Bestemmer denne ”kanalens” kapasitet til 7 +/- 2 informasjonsenheter Hvordan klarer vi oss i verden med en slik dramatisk begrensning? Hvordan overskrider vi denne begrensningen? Millers svar: Ved å rekode input-informasjon i større enheter (’chunking’) 2.IT ga terminologi og forståelsesformer til en ny type mentalistisk psykologi

8 Chomsky (1957) bruker IT (endelig tilstandsmaskiner etc.) i argumentasjonen mot atferdspsykologi Chomsky (1957): Språkkompetansen er (mentalt) representert som en ’generativ grammatikk’ (regelproduksjonssystem) Nødvendig å anta en medfødt ”indre” språkkompetanse Eksempel 2: Chomsky N.A. (1959) A review of Skinner's Verbal Behavior. Language, 35, Skinner tar feil! Atferdspsykologiens “eksterne” forklaringsprinsipper (stimuli/respons) er ikke tilstrekkelige til å redegjøre for barns (raske) læring av språk

9 Millers (1957) begrep om ”mental koding” (chunking) innebærer en antagelse om en ”aktiv mind”, dvs. en aktiv, mental strukturering av sanseinformasjon Miller (1957) og Chomsky (1959) forfekter en mentalistisk psykologi: Chomsky (1959) antar at språklig atferd må forstås ut fra språklig representert kunnskap, at språk genereres fra en mentalt representert ”generativ grammatikk” Kodet informasjon (Miller, 1957) Generativ grammatikk (Chomsky, 1959) Sansepåvirkning Handling/atferd Chunking (Miller, 1957) Generering av språk (Chomsky, 1959)

10 Newell & Simon, c. 1954: Utvikler programmeringsspråket IPL (en forløper til LISP) som et språk for å formulere psykologiske teorier om problemløsning. Viser hvordan (”mentalt” representert) problemløsningskunnskap leder til (”mentalt kontrollerer”) problemløsningsatferd Miller G. A., Galanter E., Pribram K. H. (1960) Plans and the structure of behavior: Foreslår en ”kybernetisk” informasjonsprosess (TOTE) som alternativ til atferdspsykologenes ”fysiologiske” S-R-bue 3. IT ga den nye mentalistiske (kognitive) psykologien vitenskapelig legitimitet “[Tolman’s (1932)] rat is left buried in thought“ (Gutherie, 1935) Kritikk av begreper om ‘mental kontroll’ før IT, eksempel :

11 Den kognitive ”revolusjon” Neisser, 1967: "every psychological phenomenon is a cognitive phenomenon (…) the term "cognition" refers to all processes by which the sensory input is transformed, reduced, elaborated, stored, recovered, and used (…) cognition is involved in everything a human being might possibly do (...) " Lærebok i kognitiv psykologi, UiO c. 1990: "in general, we try to understand human cognitive processes in terms of what we know about their electronic counterparts" (Bourne, 1986, 30) Akademisk psykologi fram til c er dominert av Watsons slagord: "everything can be done in terms of stimuli and response”

12 Ekspertise, AI og BB-psykologi: Et paradoks Newell og Simon (1957 mfl)  Feigenbaum (1963) ES-visjonen: ”Klone” eksperter i form av dataprogrammer Kunnskapsrepresentasjon: HVIS SÅ Ambisiøse, komplekse systemer, tidkrevende å utvikle c.1990: Knapt systemer i praktisk bruk Eksperter lar seg ikke ”klone” i form av dataprogrammer AI og ekspertise: Ekspertsystemer (ES)

13 BB-forskning på profesjonelt skjønn ’Det fjerde slaget mot menneskets selvfølelse’ Hovedfunn I: Profesjonsutøveres skjønnsmessige vurderinger overgås systematisk av enkle formler Hovedfunn II: Skjønnsmessige vurderingers nøyaktighet bedres ikke med erfaring

14 BB-psykologiske studier av ekspertskjønn Meehls (1954) Clinical versus statistical prediction. A theoretical analysis and a review of the evidence. ”Klinisk”: Skjønnsmessig tolkning av gitte data, dvs. vurdering "bare" ved bruk av hodet Statistisk/aktuarisk: Bruk av aktuarisk formel, dvs. formel basert på empirisk registrerte relasjoner mellom data og kriterium Type vurderinger: Har pasienten hjerneskade? Er pasienten schizofren?

15 Kliniker og aktuarisk formel gis samme informasjon Review av 20 studier Resultat: Aktuariske metoder ga bedre vurderinger i de aller fleste tilfellene, aldri dårligere. forts. Meehl, 1954 Innvendinger mot Meehls (1954) funn, bl.a.: Klinisk skjønn vil komme bedre ut dersom … : ”konfigurale” vurderinger 1) … det kreves ”konfigurale” vurderinger 2) … kliniker også har tilgang til ”naturlig” informasjon

16 ”Konfigurale” vurderinger vs. enkle formler (Goldberg, 1965) Data: 861 MMPI-protokoller, dvs. 11 tallverdier Vurdering: Er pasienten nevrotisk eller psykotisk? Sammenligning: ”Goldbergs regel” vs. 29 klinikere Resultat: Beste kliniker: 67% korrekte Snitt klinikere: 62% korrekte "Goldbergs regel": 70 % korrekte

17 Hvordan ser Goldbergs regel ut? skala-1 + skala-2 + skala-3 – (skala-4 + skala-5) >= > Psykotisk Nevrotisk

18 Gjør tilgang på ”naturlig” informasjon ekspertskjønn bedre? (Dawes, 1971) Vurdering: Seleksjon av elever til college, dvs. prediksjon av skoleprestasjoner Sammenligning: Inntakskomitéer (m/ erfarne skolefolk) vs. enkle formler Data: Komitéen har også tilgang til ”naturlig” informasjon, bl.a intervju med studentene

19 Dawes (1971) funn, bl.a: (1) GRE GPA QI, simulerte inntakskomitéens vurderinger (2) GRE GPA QI predikerte bedre enn komiteen (3) Bare GPA var tilstrekkelig til å foreta bedre "vurderinger" enn inntakskomitéen (4) En enkel formel eliminerte 55% av søkerne som ble vurdert og avvist av komiteen, uten å eliminere en eneste søker som ble akseptert av komiteen. Ved å bruke formelen ville man spare 18 millioner dollar (i 1971) årlig i USA

20 Vurderingers nøyaktighet forbedres ikke med erfaring “Yet in nearly every study of experts carried out within the judgment and decision-making approach, experience has been shown to be unrelated to the empirical accuracy of expert judgments” (Hammond, 1996, 278)

21 Hvorfor forbedres ikke vurderingers nøyaktighet med erfaring? 1.Profesjonelle vurderinger foretas gjerne i ”probabilistiske” læringsomgivelser Deterministiske læringsomgivelser: Samme (type) valg/vurdering gir samme (type) tilbakemelding. Probabilistiske læringsomgivelser: Samme type vurdering/valg kan gi forskjellig (type) tilbakemelding fra gang til gang. 2. I ”probabilistiske” læringsomgivelser er ikke betingelsene for effektiv erfaringslæring til stede

22 Betingelser for (effektiv) erfaringslæring: 1. Umiddelbar, utvetydig og konsistent tilbakemelding når man tar/gjør feil 2. At tilbakemeldingen gir en klar forståelse av hva som er feilen I probabilistiske læringsomgivelser lærer vi ikke av tilbakemeldingen vi får på vurderinger/valg fordi tilbakemeldingen ikke forteller oss hva vi har gjort galt (jf. læringsbetingelse 2)

23 Så, hva er ”paradokset”? AI-forskning viser at eksperter slett ikke lar seg erstatte av komplekse, dyre AI-ekspertsystemer … … mens BB-forskningen viser at ”sofistikert” ekspert-skjønn systematisk utkonkurreres av helt enkle formler. Hvorfor? AI-ekspertsystemer forsøker å ”fange inn” også eksperters ekstremt (i forhold til programmers) gode egenskaper (’se’ hva som er relevant info i en ’åpen’ situasjon etc.) ? Fornuftig bruk av IT til beslutningsstøtte krever kunnskap om menneskers styrker og svakheter som bedømmere- og beslutningstakere, dvs. kunnskap i BB-psykologi Moralen:

24 Hva er bedømmings- & beslutningspsykologi? Normative spørsmål: Hva er gode bedømminger/ beslutninger ideelt sett? Ut fra hvilke standarder tar vi stilling til dette? Deskriptive spørsmål: Hvordan bedømmer/beslutter vi? Og hvordan og hvorfor avviker vi fra normative standarder? Preskriptive spørsmål: Hva kan vi gjøre for å forbedre våre bedømminger og beslutninger?

25 Normative modeller spesifiserer et ideal ved å gi en standard for ”optimal tenkning” (f.eks.: SEU, sannsynlighetsregning) Deskriptive modeller spesifiserer hvordan folk faktisk tenker/bedømmer/beslutter og hvordan og hvorfor de avviker fra de normative modellene. Preskriptive modeller er ment å bidra til å bringe tenkning, vurderinger, beslutninger bedre i overensstemmelse med normative modeller, dvs. ment å bidra til å forbedre vurderinger og beslutninger. BB-psykologi svarer til deskriptive modeller

26 Beslutningsteknologi Kunnskap representeres og formidles via datasystemer ofte nettopp med tanke på å støtte bedømminger og beslutninger Beslutningsteknologi = IT + preskriptive BB-modeller Web er et optimalt medium for å formidle BB-støtte

27 Eksempel: Beslutningsstøttet shopping: “The ubiquity of personal computers and the increasing access to the World Wide Web provide greater availability of decision technology for all levels of problems. Even 10 years ago, sophisticated decision analysis would have required an expensive consultant. Now, on-line decision aids and personal computer programs are making inexpensive, yet sophisticated, decision technology available to everyone. However, much work remains to be done to make these tools more theoretically sound and more responsive to decision makers' needs (…) decision tools will be as important in the 21st century as spreadsheets were in the 20th” Edwards & Fasalo, 2001: Decision technology. Annual Review of Psychology Feb 2001, Vol. 52, pp

28 BA i IT-SLP: Bedømmings- og beslutningsprosesser To-faglig: Informatikk: Praktisk profesjonskompetanse + Psykologi: Forskningsmetode og BB-psykologi Oppbygning: slp/presentasjon/oppbygging-gjennomforing.html

29 IT-SLP: BB Blokk A: HUMIT Grunnkurs i programmering for humanister HUMIT Hypermedier INF Objektorientert programmering INF Systemutvikling

30 Blokk B: PSY Generell psykologi (20 poeng)PSY Generell psykologi PSY Forskningsmetoder I PSY Sosialpsykologi I

31 Blokk C: STK Innføring i anvendt statistikk PSY Bedømmings- og beslutningspsykologi I PSY Bedømmings- og beslutningspsykologi II, Selvvalgt oppgavePSY Bedømmings- og beslutningspsykologi II, Selvvalgt oppgave PSY Kognitiv psykologi I

32 Blokk D: Psykologivinklet, for eksempel: HUMIT Web-programmering PSY Organisasjonspsykologi I: Ledelse og kommunikasjon (Forutsetter: PSY Generell psykologi og PSY Sosialpsykologi I.)PSY Organisasjonspsykologi I: Ledelse og kommunikasjonPSY Generell psykologi PSY Sosialpsykologi I PSY Organisasjonspsykologi II: Menneske teknologi samspill (Forutsetter: PSY Generell psykologi, PSY Forskningsmetoder I og PSY Sosialpsykologi I)PSY Organisasjonspsykologi II: Menneske teknologi samspillPSY Generell psykologiPSY Forskningsmetoder IPSY Sosialpsykologi I INF Prosjektoppgave i programmering (forutsetter INF1010)INF Prosjektoppgave i programmering

33 Blokk D: Informatikkvinklet, for eksempel: HUMIT Funksjonell programmering INF Prosjektoppgave i programmering (forutsetter INF1010)INF Prosjektoppgave i programmering INF Databasesystemer /INF4100 (forutsetter INF1010 og INF1050)INF Databasesystemer PSY Organisasjonspsykologi II: Menneske teknologi samspill (Forutsetter: PSY Generell psykologi, PSY Forskningsmetoder I og PSY Sosialpsykologi I)PSY Organisasjonspsykologi II: Menneske teknologi samspillPSY Generell psykologiPSY Forskningsmetoder IPSY Sosialpsykologi I


Laste ned ppt "BA i IT-SLP: Bedømmings- og beslutningsprosesser Geir Kirkebøen Orienteringsmøte for førsteårsstudenter i IT-SLP, 6. april 2005."

Liknende presentasjoner


Annonser fra Google