Presentasjon lastes. Vennligst vent

Presentasjon lastes. Vennligst vent

1 Kap 07 Diskrete sannsynlighetsfordelinger. 2 Sannsynlighetsfordelinger - Typer Uniform fordeling Indikator fordeling Binomisk fordeling Multinomisk.

Liknende presentasjoner


Presentasjon om: "1 Kap 07 Diskrete sannsynlighetsfordelinger. 2 Sannsynlighetsfordelinger - Typer Uniform fordeling Indikator fordeling Binomisk fordeling Multinomisk."— Utskrift av presentasjonen:

1 1 Kap 07 Diskrete sannsynlighetsfordelinger

2 2 Sannsynlighetsfordelinger - Typer Uniform fordeling Indikator fordeling Binomisk fordeling Multinomisk fordeling Geometrisk fordeling Hypergeometrisk fordeling Poisson fordeling Normalfordeling Log-normal fordeling Gamma fordeling Eksponential fordeling Beta fordeling Weibull fordeling

3 3 Sannsynlighetsfordelinger - Strategi 1.Grunnleggende forutsetninger for eksperimentet og den tilhørende sannsynlighetsmodell. 2.Definisjon av den aktuelle stokastiske variable og utledning av dennes sannsynlighetsfordeling. 3.Undersøkelse av egenskaper ved den utledede sannsynlighetsfordeling, bl.a. beregning av forventning og varians.

4 4 Uniform fordeling La X anta verdiene x 1, x 2, …, x n alle med samme sannsynlighet p = 1/n xx 1 x 2 …x n P(X=x)p=1/np=1/n…p=1/n

5 5 Indikator fordeling La I være en indikatorvariabel, dvs I kan anta verdiene 0 eller 1. La p være sannsynligheten for at I antar verdien 1. x01 P(I=x)1-pp I k =I

6 6 Indikator fordeling Vi kaster n terninger. Hva blir forventet antall forskjellige øyne som terningene viser? 1 hvis minst en terning viser j øyne La I j = 0 hvis ingen terning viser j øyne Eksempel Antall forskjellige øyne er da: X =  I j j = 1,2,…6

7 7 Binomisk fordeling Registrering av antall ganger et bestemt utfall A inntreffer. 1)Delforsøkene er uavhengige 2)I hvert delforsøk registreres hvorvidt et utfall A inntreffer. 3)Sannsynligheten p = P(A) er den samme i alle n delforsøk. Sannsynligheten for at vi i løpet av n forsøk får x treff er da:

8 8 Binomisk fordeling Bevis

9 9 Binomisk fordeling Bevis

10 10 Binomisk fordeling X er antall kron i forsøket med n = 3 myntkast. X er binomisk fordelt fordi: 1)Myntkastene er uavhengige 2)I hvert kast registreres hvorvidt et utfall K (kron) inntreffer. 3)Sannsynligheten p = P(K) = 1/2 er den samme i alle 3 delforsøk. Sannsynligheten for at vi i løpet av 3 forsøk får x treff er da: Eksempel: Tre myntkast

11 11 Binomisk fordeling Til en eksamen er det til hvert av 20 spørsmål 5 valgmuligheter. Beregn sannsynligheten for å stå til eksamen ved reint tipping når minst 10 av svarene må være rette. A = Utfallet at et svar er rett. X = Antall rette svar for en eksamenskandidat X er binomisk fordelt fordi: 1)Tipping for hvert av de n=20 spørsmålene er uavhengige. 2)I hvert spørsmål registreres hvorvidt utfall A (rett) inntreffer. 3)Sannsynligheten p = P(A) = 1/5 = 0.20 er den samme i alle n=20 delforsøk. Sannsynligheten for at vi i løpet av n=20 forsøk får x rette er da: Eksempel: Flervalgseksamen

12 12 Binomisk fordeling Registrering av antall ganger et bestemt utfall A inntreffer. 1)Delforsøkene er uavhengige 2)I hvert delforsøk registreres hvorvidt et utfall A inntreffer. 3)Sannsynlighetene p 1 = P(A) og p 2 = P(A c ) = 1-p 1 er den samme i alle n delforsøk. Sannsynligheten for at vi i løpet av n forsøk får x 1 treff og x 2 = n-x 1 ikke-treff er da: Alternativ

13 13 Multinomisk fordeling Registrering av antall ganger bestemte utfall A 1, A 2, …, A m inntreffer. 1)Delforsøkene er uavhengige 2)Hvert delforsøk gir ett av m mulige utfall A 1, A 2, …, A m 3)Sannsynlighetene for hvert av de mulige utfallene er de samme i alle n delforsøk. Sannsynligheten for at vi i løpet av n forsøk får x 1 treff av A 1, x 2 treff av A 2, …, x m treff av A m :

14 14 Multinomisk fordeling Vi utfører n = 12 terningkast.. Hvert kast har 6 mulige utfall, 1 øye (A 1 ), 2 øyne (A 2 ),, …, 6 øyne (A 6 ) med p 1 = p 2 = … = p 6 = 1/6. X i = Antall ganger i øyne observeres. Sannsynlighetsfordelingen til X 1, X 2, …, X 6 er gitt ved: Spesielt er sannsynligheten for at alle øyne forekommer 2 ganger lik: Eksempel: 12 terningkast

15 15 Geometrisk fordeling Vi tenker oss et binomisk forsøk, en serie uavhengige enkeltforsøk, hvor vi holder på inntil første gang A inntreffer. X = Antall forsøk til første gang A inntreffer Sannsynligheten for at første treff kommer i x’te forsøk: Siden punktsannsynlighetene blir ledd i en geometrisk rekke, sier vi at X er geometrisk fordelt.

16 16 Geometrisk fordeling Sannsynligheten for at et gitt måleinstrument feiler ved en test setter vi til Hva er sannsynligheten for at det sjette måleinstrumentet som blir kontrollert er det første som feiler og hva er forventet antall tester inntil første feilforekomst? Eksempel: Måleinstrument

17 17 Hypergeometrisk fordeling N = Totalt antall elementer i populasjonen. M = Antall spesielleobjekter i populasjonen (defekte, rød, …) N-M = Antall vanlige objekter i populasjonen (intakte, hvite, …) Trekking av n elementer fra populasjonen (uten tilbakelegging). Antall spesielle elementer noteres. Trekking med tilbakelegging gir binomisk situasjon. N>> n gir også binomisk situasjon med Y ~ bin(n,M/N)

18 18 Hypergeometrisk fordeling I en forening med 10 medlemmer er det 6 menn og 4 kvinner. En delegasjon på 4 medlemmer velges ut ved loddtrekning. Bestem sannsynligheten for at delegasjonen består av 3 kvinner. Eksempel: Delegasjon 1 N=10 M = 4 n = 4 Y = Antall kvinner i delegasjonen y = 3

19 19 Hypergeometrisk fordeling I en forening med 100 medlemmer er det 60 menn og 40 kvinner. En delegasjon på 4 medlemmer velges ut ved loddtrekning. Y = Antall kvinner i delegasjonen. Eksempel: Delegasjon 2 N=100 M = 40 n = 4 Hypergeometrisk: Binomisk:

20 20 Poisson fordeling Registrerer forekomster av en hendelse A i et bestemt område t. 1)Forekomster av A i ikke-overlappende områder er uavhengige. 2)Forventet antall forekomster  av A pr enhet er konstant over hele området. 3)To forekomster av A kan ikke være fullstendig sammenfallende.

21 21 Poisson fordeling - Sjeldne fenomener - Tilnærming til binomisk fordeling ved stor n og liten p - Trær på et skogsareal av en bestemt størrelse - Bakterier i en bakteriekultur - Blodlegemer i en blodprøve - Forsikring - Kunder som ankommer en butikk i løpet av en viss tid - Telefonbruk - Arbeidsulykker i en bedrift i løpet av en viss tid - Reservedeler - Trafikk-ulykker - Radioaktivitet - Krigsutbrudd - Posisjoner av stjerner i universet - Feiltrykk i bøker - ….. Eksempler på Anvendelses-områder

22 22 Poisson fordeling 0th=t/n n intervaller Utledning 1

23 23 Poisson fordeling Tilnærming til Binomisk fordeling. Utledning 2

24 24 Poisson fordeling Utledning 3

25 25 Poisson fordeling Eksempel: Trær Vi betrakter forekomster av trær i et skogareal. Forutsetninger: 1.Forekomster av trær i et område er uavhengig av forekomster i andre ikke-overlappende områder. 2.Forventet antall trær pr. arealenhet er konstant over hele området. 3.To trær kan ikke stå nøyaktig på samme sted. Gjennomsnittlig antall trær pr mål er  t=12.0 /mål ·1 mål = 12. X = Antall trær på et mål. Sannsynligheten for å finne 7, henholdsvis 20 trær pr mål.

26 26 Poisson fordeling Eksempel: Medfødte misdannelser i Bømlo kommune 1 I ble det i Bømlo kommune i Hordaland observert hele 3 tilfeller av alvorlige misdannelser i sentralnervesystemet hos nyfødte barn i løpet av et halvt års tid. Slike misdannelser forekommer vanligvis meget sjelden. I Bømlo ville en vente anslagsvis ett tilfelle hvert fjerde år. Den type misdannelser det dreier seg om, omfatter bl.a. ryggmarksbrokk, dvs at ryggraden er ufullstendig utvokst og barnet kan få meget alvorlige skader på nervene i ryggmargen. Under ledelse av Institutt for forebyggende medisin ved Universitetet i Oslo ble det satt i gang undersøkelse for å se om det kunne være spesielle årsaker til den overhyppighet en registrerte i Bømlo. En fant ikke noen slike årsaker, og konkluderte med at det hele var et resultat av tilfeldigheter. Vi skal se på hvordan sannsynlighetsberegning kan kaste lys over dette problemet.

27 27 Poisson fordeling Vi bestemmer først det forventede antall forekomster  pr halvår. Det blir født ca 80 barn i løpet av et halvt år i Bømlo, og risikoen for misdannelse (ut fra tall fra hele landet) er ca 1.6 pr 1000 fødsler, dvs et forventet antall på Vi setter derfor  = Vi beregner sannsynligheten for 3 eller flere forekomster: Eksempel: Medfødte misdannelser i Bømlo kommune 2 Siden dette tallet er så lite, kan det være fristende å tro at det hele ikke bare er tilfeldig, men at misdannelsene har en bestemt årsak (medikamenter, miljøgifter, …). Imidlertid kan vi kanskje spørre hva sannsynligheten er for en gang i løpet av 10 halvår å observere slike 3 eller flere slike misdannelser blant de øvrige 50 kommunene på samme størrelse som Bømlo. Siden dette tallet er såpass stort, er det ikke lengre så merkelig med slike observasjoner som i Bømlo.

28 28 Tilnærming n/N < 0.1P+n/N < 0.1 n > 10 (N-n)/(N-1)·np(1-p) > 10 np(1-p) > 10  > 15 n > 10 p <= 0.1  = M/N  Bin(n,  )  Po(  )  = np

29 29 ENDEND


Laste ned ppt "1 Kap 07 Diskrete sannsynlighetsfordelinger. 2 Sannsynlighetsfordelinger - Typer Uniform fordeling Indikator fordeling Binomisk fordeling Multinomisk."

Liknende presentasjoner


Annonser fra Google