Presentasjon lastes. Vennligst vent

Presentasjon lastes. Vennligst vent

Aktuell forskning v/Ifi; Teknisk programvare

Liknende presentasjoner


Presentasjon om: "Aktuell forskning v/Ifi; Teknisk programvare"— Utskrift av presentasjonen:

1 Aktuell forskning v/Ifi; Teknisk programvare
Numerisk simulering - hva er det? Programvare for simulering; utfordringer Teknisk programvare v/Ifi Hva slags jobb kan man få? Studieveier

2 Hva er simulering? Fysiske prosesser i naturen eller tekniske innretninger Matematiske modeller (særlig partielle differensiallikninger) Numeriske metoder, programmering Datamaskin-eksperimenter Visualisering og data-analyse

3 The Simulation Pipeline
DATASET UNSTRUCTURED_GRID POINTS 201 float CELLS Results Processes Prediction & Control Refinement Computations Mathematical Model

4 Hvorfor simulere? Lavere kostnader enn fysiske eksperimenter i felten
Fysiske eksperimenter kan være farlige, dyre eller umulige Gir bedre innsikt og forståelse Gir bedre muligheter for prediksjon, kontroll og optimal design

5 Store teknologiske utfordringer
“Grand Challenges” strømningsberegninger (vær, fly, bil, ...) simulering av miljøet (jord, hav, atmosfære) økosystem simulering biomekanikk & medisin molekylærbiologi molekyl-design og -konstruksjon Simulering er et helt sentralt verktøy!

6 New Understanding of Life Processes
Simulation is important in the exploration of life processes, ranging from studies of DNA to investigations of blood circulation and inner organs like the heart, brain and lungs.

7 DNA and Drug Design Better insight in the structure of DNA
leads to better understanding and control of life processes. For instance, this can lead to new and improved drugs, like a vaccine for the flu!

8 Heartbeats and Flowing Blood
Millions of people suffer from atherosclerosis. Fatty blockages of the arteries gradually obstruct blood flow and ultimately causes the heart to stop beating. This remains one of the leading causes of heart attacks around the world. Simulation of blood and other complex fluid flows may lead to changes in accepted surgical practices that will dramatically extend the life expectancy of those suffering from arterial diseases like atherosclerosis. Attempts are made to develop arterial grafting techniques that will reduce atherosclerosis build up. Various graft designs can be tested through accurate simulations of the blood flow.

9 Electrical Activity in Heart
Simulation of the electrical activity in the human heart based on a model coupling several PDEs and ODEs. The visualised electrical potential represents a period of 250 ms. This problem is extremely demanding in terms of computational resources and requires advanced solution methods and fast hardware.

10 Have You Quit Smoking? Computational fluid dynamics (CFD) techniques used in the design of cars, airplanes and aerospace vehicles have been converted to use in the complex branching geometry of the lung's small airways. Results from 3-D lung airflow modeling, depicting flow velocity at selected cross-sections in a single bifurcation.

11 Earth & Environment To better understand the evolution of the Earth
and the processes making up our environment, simulation is an indispensable tool.

12 What’s the Weather Like Today?

13 Warm Winters and Cold Summers
The sea level is roughly four inches higher than it was 100 years ago, and it goes up one to three millimeters a year. Do the rising levels reflect climate change associated with alarms about global warming, as many scientists believe? Or, as others argue, are they part of normal fluctuations in weather cycles that will even out over time? Either way, should we be worried? What are the potential effects for coastal population centers? The need for answers runs smack up against the vast uncertainties inherent in a system as complex as Earth's climate. The best tool - the only tool - we have for assimilating the multitude of variables and trying to make rational predictions is computer modeling, and it's not yet good enough. Each frame in this animation of the surface temperature of the Gulf Stream represents a seven day period.

14 Travels With Buzz Lightyear: - To Infinity and Beyond
The understanding of the Universe, let alone man’s journey into Space would have been impossible without simulations.

15 Evolution and Structure of the Universe
This is a simulation of a comet fragment one kilometer in diameter plunging into Jupiter's atmosphere at 134,000 miles per hour. The animation shows a five-second time period, one frame every seconds. Color indicates density, with initial density of the comet core (red) corresponding to solid ice. Pressure rapidly builds in front of the comet from the aerodynamic force of impact with the atmosphere, flattening the sphere and ripping it apart within seconds.

16 Star Trek, Space Shuttles and Global Communications
Professor Richard Feynman of CalTech, Nobel prize winner and world-known eccentric, joined reluctantly the Rogers Commision investigating the Challenger accident. During his personal search for the cause, he learned that NASA officials estimated the chance of failure of the shuttle to be about 1 in 100,000. Feynman found that this number was actually closer to 1 in 100. He proved by experiment that rubber components used to seal the solid rocket booster joints failed to expand when the temperature was at or below 0 degrees C. This caused a leakage that heated the fuel tank and caused the explosion. See January 28, 1986: Flight 51-L, the Challenger space shuttle exploded. The 7 crew members died.

17 Manufacturing Processes
Today, almost any industrial branch use simulation as a tool for evaluating, predicting and optimising the manufacturing processes. This is mainly due to better cost effectiveness and reduced risks.

18 Key to Norwegian Wealth: Oil & Gas
Mongstad Refinery Six rock cavern stores, total capacity of 9.4 million barrels Handles crude oil carriers up to 380,000 deadweight tons It serves as the terminal for: Troll Oil Pipeline I, 250,000 barrels per day Troll Oil Pipeline II (Q3 1999), 150,000 barrels per day Heidrun transshipment, about 240,000 barrels per day

19 Aerospace and Automotive Industries
Saab crash simulations

20 Silicon - What Makes the Information Society Tick...
Silicon makes up 27 percent of the Earth’s crust, and provides the raw material for nearly all elelctronic chips, from VCRs to the Space Shuttle. The never-ending struggle for faster circuitry, smaller, more perfect chips, relies heavily on simulation of the physical processes involved in the manufacturing of microelectronic chips. The Alpha microprocessor, the core silicon "chip" used in the CRAY T3D, can do 150 million calculations a second.

21 The Third Paradigm of Science
“Simulation has become recognized as the third paradigm of science, the first two being experimentation and theory.” “High Performance Computing and Communications: Foundation for America's Information Future” (Supplement to the President’s FY 1996 Budget)

22 Ufordring i simulering: Programvare
Simulering krever maskinvare, metoder og programvare Siden 1950 har datamaskinene blitt 1,000,000 ganger raskere. algoritmene blitt 1,000,000 ganger raskere. Flaskehalsen pr. i dag er høykvalitets-programvare

23 Hvorfor er programvareutvikling en flaskehals?
Programvareutvikling er ofte den mest ressurskrevende delen av simuleringsprosjekter Store, kompliserte programsystemer Ekstreme krav til effektivitet Stor algoritmisk kompleksitet Metoder for numerisk programvareutvikling er (tradisjonelt) primitive

24 Teknisk programvare v/Ifi
Aktivitet: utvikling av moderne metoder og programvare for simulering Spesielt forskningsfokus mot objekt-orientert numerisk programvare (i C++) metoder for parallelle beregninger medisinske anvendelser

25 Computing in Parallel Computing in Parallel Computing in Parallel
Forskere og ingeniører vil alltid fylle de raskeste og største datamaskinene med: mer kompliserte matematiske modeller finere oppløsning (grid) for bedre nøyaktighet Split et problem i delproblemer og løs hvert delproblem i parallell (krever parallelle datamaskiner)

26 Ingredienser i et typisk prosjekt

27 Studieveier TPV studieretning: informatikk hovedfag
programmering og/eller matematikk/fysikk Profesjonsstudiet i informatikk egen studieretning med krav til programmering og/eller matematikk/fysikk Nytt studium: Simulering og anvendt matematikk (SAM) matematikk, statistikk, programmering, fysikk

28 Jobbmarkedet Stort og økende underskudd på kandidater som forstår matematikken, fysikken og programvare for simulering konsulentfirmaer innen ulike ingeniørdisipliner (bygg, maskin, marin teknologi) forskningsinstitutter (SINTEF, IFE, …) industri (Veritas, Kværner, Aker, ABB, …) undervisnings-sektoren

29 Hva slags kurs skal jeg velge?
Svingninger i jobbmarkedet er som regel raskere enn utdanningens lengde… Ikke velg det “alle andre” velger! Velg noe som er krevende og lær det godt gir mer unik/etterspurt kompetanseprofil TPVs profil: markedsrettet kombinasjon av tradisjonelt krevende (matematiske) emner og mer “mainstream” IT

30 Kjerneteknologier Objekt-orientert programmering C++, Fortran, Java
Scripting og GUI-bygging: Perl, Python Element- og differansemetoder Matematiske modeller for strømning, varmetransport og materialdeformasjon

31 Computational Steering
Mål: klinisk operativ programvare basert på ultralydundersøkelser Modell: lydbølger gjennom kroppen Eget C++ program for å simulere lydbølgenes forplantning Visualisering og data/bilde-analyse via kommersielle programsystemer Python script for å starte/stoppe simulering, endre kroppsdata, visualisere osv.

32 Computational Steering

33 Computational Steering
Relationship between electrocardiogram and different anomalies More accurate diagnosis Coupled system of ordinary and partial different eqs. High resolution >108 points

34 The Diffpack Philosophy
Structural mechanics Porous media flow Water waves Aero- dynamics I/O FDM Grid FEM Field Stochastic PDEs Incompressible flow Vector Matrix Ax=b Other PDE applications Heat transfer

35 Diffpack - Selected Markets
Mechanical Engineering Oil & Gas Aerospace Games Automobile Energy Finance Shipbuilding Telecom The different elements in this slide will come in one by one automatically. The listed markets represents markets in which either the previous public version of Diffpack or the full version of Diffpack have been used. Listed products does not necessarily represent a company that has been using Diffpack. Main point: Diffpack is application independent and listed markets does only represent some of the application areas where Diffpack has been used. Environment Medicine

36 Diffpack - Selected Customers
Commercial Intel Petrobras Shell DaimlerChrysler Caisse Centrale des Banques Popular Commissariat a l'Energie Atomique Simrad Optronics St. Gobain Industrial Ceramics Research Institutions Istituto Superiore di Sanita SINTEF Research Foundation, Norway Lawrence Livermore Nat. Lab Institut Francais du Petrol Veritas Value Adding Resellers Geologica Kappa Engineering SA Calcom SA Cadmit, Inc. Universities Stanford University Yamanashi University Yokohama National University Warsaw University of Technology Norrland University Hospital ETH Zurich Korea University Vanderbilt University

37 Some Projects Simulation of electrical activity in human heart
Simulation of the flow in the human heart Numerical methods for option pricing Software for numerical solution of PDE’s: Diffpack Scientific computing using a Linux-cluster: Diplopodus Finite element modelling of ultrasound wave propagation Multi-physics models by domain decomposition methods Scripting techniques for scientific computing Numerical modelling of reactive fluid flow in porous media

38 Staff Knut Andreas Lie (SINTEF) Kent Andre Mardal Åsmund Ødegård
Bjørn Fredrik Nielsen (NR) Joakim Sundnes Wen Chen Xing Cai Øyvind Hjelle(SINTEF) Ola Skavhaug Aicha Bounaim Hans Petter Langtangen Are Magnus Bruaset (NO) Linda Ingebrigtsen Glenn Terje Lines Aslak Tveito Part-time Ph.D. Students Post Docs Faculty

39 Oppsummering Simulering: bruke datamaskin-modeller til å studere virkeligheten Anvendelser i industri, økonomi, medisin… Simulering = fysikk/matematikk + programmering/IT Teknisk programvare v/Ifi har fokus på hvordan lage programvare for simulering Stort kandidatbehov


Laste ned ppt "Aktuell forskning v/Ifi; Teknisk programvare"

Liknende presentasjoner


Annonser fra Google